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Abstract
Quantization based techniques are the current
state-of-the-art for scaling maximum inner prod-
uct search to massive databases. Traditional ap-
proaches to quantization aim to minimize the re-
construction error of the database points. Based
on the observation that for a given query, the
database points that have the largest inner prod-
ucts are more relevant, we develop a family
of anisotropic quantization loss functions. Un-
der natural statistical assumptions, we show that
quantization with these loss functions leads to
a new variant of vector quantization that more
greatly penalizes the parallel component of a dat-
apoint’s residual relative to its orthogonal com-
ponent. The proposed approach, whose imple-
mentation is open-source, achieves state-of-the-
art results on the public benchmarks available at
ann-benchmarks.com.

1. Introduction
Maximum inner product search (MIPS) has become a pop-
ular paradigm for solving large scale classification and re-
trieval tasks. For example, in recommendation systems, user
queries and documents are embedded into a dense vector
space of the same dimensionality and MIPS is used to find
the most relevant documents given a user query (Cremonesi
et al., 2010). Similarly, in extreme classification tasks (Dean
et al., 2013), MIPS is used to predict the class label when
a large number of classes, often on the order of millions
or even billions are involved. Lately, MIPS has also been
applied to training tasks such as scalable gradient compu-
tation in large output spaces (Yen et al., 2018), efficient
sampling for speeding up softmax computation (Mussmann
and Ermon, 2016) and sparse updates in end-to-end trainable
memory systems (Pritzel et al., 2017).

To formally define the Maximum Inner Product Search
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(MIPS) problem, consider a database X = {xi}i=1,2,...,n

with n datapoints, where each datapoint xi ∈ Rd in a d-
dimensional vector space. In the MIPS setup, given a query
q ∈ Rd, we would like to find the datapoint x ∈ X that
has the highest inner product with q, i.e., we would like to
identify

x∗i := arg max
xi∈X

〈q, xi〉.

Exhaustively computing the exact inner product between q
and n datapoints is often expensive and sometimes infeasi-
ble. Several techniques have been proposed in the literature
based on hashing, graph search, or quantization to solve the
approximate maximum inner product search problem effi-
ciently, and the quantization based techniques have shown
strong performance (Ge et al., 2014; Babenko and Lempit-
sky, 2014; Johnson et al., 2017).

In most traditional quantization works, the objective in the
quantization procedures is to minimize the reconstruction
error for the database points. We show this is a suboptimal
loss function for MIPS. This is because for a given query,
quantization error for database points that score higher, or
have larger inner products, is more important. Using this
intuition, we propose a new family of score-aware quanti-
zation loss functions and apply it to multiple quantization
techniques. Our contributions are as follows:

• We propose the score-aware quantization loss function.
The proposed loss can work under any weighting func-
tion of the inner product and regardless of whether the
datapoints vary in norm.

• Under natural statistical assumptions, we show that the
score-aware quantization loss can be efficiently calcu-
lated. The loss function leads to an anisotropic weight-
ing that more greatly penalizes error parallel with the
datapoint than error orthogonal to the datapoint.

• The proposed loss is generally applicable to many quan-
tization methods. We demonstrate the codebook learn-
ing and quantization procedures for product quantiza-
tion and vector quantization can be efficiently adapted
to the proposed loss function.

• We show that anisotropic quantization leads to large
MIPS performance gains over reconstruction loss-
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based techniques. Our method achieves state-of-the-art
performance on standard large-scale benchmarks such
as Glove-1.2M. In addition to recall gains, anisotropic
quantization gives significantly more accurate inner
product value approximations.

2. Background and Related Works
2.1. Inference as Maximum Inner Product Search

Efficient maximum inner product search (MIPS) is neces-
sary for many large-scale machine learning systems. One
popular approach to information retrieval systems and rec-
ommender systems uses representation learning in the em-
bedding space. In this framework, we learn embedding
functions to map items to be retrieved in a common vector
space, where the items can be words, images, users, audio,
products, web pages, graph nodes, or anything of interest
(Cremonesi et al., 2010; Weston et al., 2010; Guo et al.,
2016a; Gillick et al., 2019; Wu et al., 2017).

In recommender systems, two networks are jointly trained
to generate query (user) vectors and item vectors, such that
embedding vectors of queries and relevant items have high
inner product when computed in the embedding space. To
perform inference, we first pre-compute a database of em-
bedding vectors for items to be recommended. When a
query arrives, we compute the query embedding then return
the items with the highest inner product. In extreme classi-
fication, a neural network classifier is trained, where each
row of the weight matrix of the classification layer corre-
sponds to the embedding of a class label (Dean et al., 2013;
Reddi et al., 2019). In both settings, the computationally
expensive operation is finding the item embedding that has
the largest inner product with the query embedding, which
can be efficiently solved by Maximum Inner Product Search
(MIPS).

2.2. Methods for accelerating MIPS

There is a large body of similarity search literature on max
inner product and nearest neighbor search. We refer readers
to (Wang et al., 2014; 2016) for a comprehensive survey.
We include a brief summary here.

There are two main tasks required to develop an efficient
MIPS system. One task is to reduce the number of items that
are scored to identify the top result. This is typically done
with a space partitioning method. The other task is improv-
ing the rate at which items are scored. This is typically done
with quantization, and is where the main contribution of
our work lies. Successful implementation of MIPS systems
requires good performance in both tasks.

Many researchers have developed high quality implemen-
tations of libraries for nearest neighbor search, such as SP-

TAG (Chen et al., 2018), FAISS (Johnson et al., 2017), and
hnswlib (Malkov and Yashunin, 2016). We compare with
the ones available on ANN-Benchmarks in Section 5.

2.2.1. REDUCING THE NUMBER OF EVALUATIONS

One class of approaches to reducing the number of items
scored is space partitioning. These approaches partition
the space into different buckets. To perform MIPS in this
setting, we find the relevant buckets for a given query and
score only the items in these buckets.

Examples of this approach include tree search methods and
locality sensitive hashing. Tree search methods such as
(Muja and Lowe, 2014; Dasgupta and Freund, 2008) parti-
tion the space recursively, forming a tree. Locality sensitive
hashing (Shrivastava and Li, 2014; Neyshabur and Srebro,
2015; Indyk and Motwani, 1998; Andoni et al., 2015) parti-
tions the space using a similarity-preserving hash function.
There is also a class of approaches based on graph search
(Malkov and Yashunin, 2016; Harwood and Drummond,
2016). These methods work by navigating a graph by greed-
ily selecting the neighbor with the highest dot product.

2.2.2. QUANTIZATION

Quantization is an important technique for building state-
of-the-art MIPS systems in large scale settings. Below we
describe the several ways that quantization improves perfor-
mance.

• Efficient dot product computations: We can calculate
the dot product of a d dimensional query vector with
n quantized points in time O(dk + mn) using look
up tables, where k is the size of each quantization
codebook and m is the number of codebooks. For
typical choices of k and m this is faster than the O(nd)
complexity required for exact computation.

• Memory bandwidth: modern processors need work-
loads with a high amount of computation per memory
read in order to fully utilize their resources. Quantiza-
tion compresses datapoints, resulting in less memory
bandwidth usage and higher processor utilization.

• Storage: quantized datapoints take up less space in
memory or on disk. For large-scale datasets, this allows
more datapoints to be stored on a single machine.

One approach to quantization is with random projections
(Charikar, 2002; Vempala, 2005; Li and Li, 2019). One is-
sue with random projections is that quantization is oblivious
to the data, and it may be more efficient to use a quantization
method that is able to exploit structure in the data. Quanti-
zation methods of this form are available for binary quanti-
zation (He et al., 2013; Liong et al., 2015; Dai et al., 2017),
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product quantization (Jegou et al., 2011; Guo et al., 2016b;
Zhang et al., 2014; Wu et al., 2017), additive quantization
(Babenko and Lempitsky, 2014; Martinez et al., 2018), and
ternary quantization (Zhu et al., 2016). We discuss product
quantization in more detail in Section 4. There are also
lines of work that focus on learning transformations before
quantization (Gong et al., 2013; Ge et al., 2014; Sablayrolles
et al., 2019). Learning quantization from the observed data
distribution also has been studied in (Marcheret et al., 2009;
Morozov and Babenko, 2019; Babenko et al., 2016).

Our work differs from the above methods as they essentially
focus on minimizing reconstruction error as a loss func-
tion, while we develop an approach in the following section
where we minimize a novel loss function that is designed to
improve the downstream MIPS objective.

We also highlight the work May et al. (2019), where they
consider quantization objectives for word embeddings that
improve the downstream performance of training models
for natural language processing tasks.

3. Problem Formulation
Common quantization techniques focus on minimizing the
reconstruction error (sum of squared error) when x is quan-
tized to x̃. It can be shown that minimizing the reconstruc-
tion errors is equivalent to minimizing the expected inner
product quantization error under a mild condition on the
query distribution without assumption on the database point
distribution. Indeed, consider the quantization objective of
minimizing the expected total inner product quantization
errors over the query distribution:

Eq
n∑
i=1

(〈q, xi〉 − 〈q, x̃i〉)2 = Eq
n∑
i=1

〈q, xi − x̃i〉2. (1)

Under the assumption that q is isotropic, i.e., E[qqT ] = cI ,
where I is the identity matrix and c ∈ R+, the objective
function becomes

n∑
i=1

Eq〈q, xi − x̃i〉2 =

n∑
i=1

Eq(xi − x̃i)T qqT (xi − x̃i)

= c

n∑
i=1

‖xi − x̃i‖2

Therefore, the objective becomes minimizing the reconstruc-
tion errors of the database points

∑n
i=1 ‖xi− x̃i‖2, and this

has been considered extensively in the literature.

One key observation about the above objective function (1)
is that it takes expectation over all possible combinations of
datapoints x and queries q. However, it is easy to see that not
all pairs of (x, q) are equally important. The approximation
error on the pairs which have a high inner product is far more

important since they are likely to be among the top ranked
pairs and can greatly affect the search result, while for the
pairs whose inner product is low the approximation error
matters much less. In other words, for a given datapoint x,
we should quantize it with a bigger focus on its error with
those queries which have high inner product with x. See
Figure 1 for the illustration.

Following this key observation, we propose the score-aware
quantization loss. This is a new loss function for quantiza-
tion that weighs the inner product approximation error by
w, an arbitrary function of our choice that returns a weight
based on the value of the true inner product. Specifically,
we define the loss function as the following:

Definition 3.1. Given a datapoint xi, its quantization x̃i,
and a weight function w : R 7→ R+ of the inner product
score, the score-aware quantization loss with respect to a
query distribution Q is defined as

`(xi, x̃i, w) = Eq∼Q[w(〈q, xi〉)〈q, xi − x̃i〉2]. (2)

Since the norm of q does not matter to the ranking result,
we can assume ||q|| = 1 without loss of generality. Simi-
larly, assuming we have no prior knowledge of the query
distribution Q, we trivially assume q is uniformly spheri-
cally distributed. The expectation can be recomputed if Q
is known or estimated empirically.

3.1. Analyzing Score-Aware Quantization Loss

We show that regardless of the choice of w, a score-aware
quantization loss `(xi, x̃i, w) always decomposes into an
anisotropic weighted sum of the magnitudes of the parallel
and orthogonal residual errors. These two errors are defined
as follows: first, define the residual error of a quantization
x̃i as xi − x̃i. The parallel residual error is the component
of the residual error parallel to the datapoint xi; it can be
computed as

r‖(xi, x̃i) =
〈(xi − x̃i), xi〉xi

||xi||2
.

Orthogonal residual error is defined analogously, and can
be computed as

r⊥(xi, x̃i) = (x− xi)− r‖(xi, x̃i).

These two components are illustrated in Figure 1b. The rel-
ative weights of these two error components in contributing
to the score-aware loss are determined by the choice of w.

Theorem 3.2. Suppose we are given a datapoint xi, its
quantization x̃i, and a weight function w. Assuming that
query q is uniformly distributed in the d-dimensional unit
sphere, the score-aware quantization loss equals
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Figure 1. (a) Not all pairs of q and x are equally important: for x, it is more important to accurately quantize the inner product of 〈q1, x〉
than 〈q2, x〉 or 〈q3, x〉, because 〈q1, x〉 has a higher inner product and thus is more likely to be the maximum; (b) Quantization error of x
given one of its quantizer c2 can be decomposed to a parallel component r‖ and an orthogonal component r⊥. (c) Graphical illustration of
the intuition behind Equation (2). Even if c3 is closer to x in terms of Euclidean distance, c2 is a better quantizer than c3 in terms of inner
product approximation error of 〈q1, x− c〉. Notice that c3 incur more parallel loss (r‖), while c2 incur more orthogonal loss (r⊥).

`(xi, x̃i, w) = h‖(w, ||xi||)||r‖(xi, x̃i)||2

+ h⊥(w, ||xi||)||r⊥(xi, x̃i)||2

with h‖ and h⊥ defined as follows:

h‖ := (d− 1)

∫ π

0

w(||xi|| cos θ)(sind−2 θ − sind θ)dθ

h⊥ :=

∫ π

0

w(||xi|| cos θ) sind θdθ.

Proof. See Appendix Section 7.1.

Any weight function would work for the above proposed
loss. For the MIPS problem, it is intuitive to choose w so
that it puts greater weight on larger inner products. For
such w, we show that parallel quantization error is weighted
more heavily than orthogonal quantization error. This is
formalized below and illustrated in Figure 1.

Theorem 3.3. For any w such that w(t) = 0 for t < 0 and
w(t) is monotonically non-decreasing for t ≥ 0,

h‖(w, ||xi||) ≥ h⊥(w, ||xi||)

with equality if and only if w(t) is constant for t ∈
[−||xi||, ||xi||].

Proof. See Appendix Section 7.2.

3.2. Special case of w(t) = I(t ≥ T )

One particularw of interest is the functionw(t) = I(t ≥ T ).
This weight function only considers quantization loss when

the dot product is above a threshold T . Since I(t ≥ T )
satisfies the conditions for Theorem 3.3, it effectively penal-
izes parallel quantization error more greatly than orthogonal
error. With this weight function, our expressions for h‖ and
h⊥ simplify to:

h‖ = (d− 1)

∫ arccos(T/||xi||)

0

sind−2 θ − sind θdθ

h⊥ =

∫ arccos(T/||xi||)

0

sind θdθ

With w(t) = I(t ≥ T ), we have

`(xi, x̃i, w) = h‖(w, ||xi||)||r‖(xi, x̃i)||2+

h⊥(w, ||xi||)||r⊥(xi, x̃i)||2

∝ η(w, ||xi||)||r‖(xi, x̃i)||2 + ||r⊥(xi, x̃i)||2

where η(w, ||xi||) :=
h‖(w, ||xi||)
h⊥(w, ||xi||)

.

We can recursively compute η(w = I(t ≥ T ), ||xi||) as a
function of d analytically. Furthermore we can prove that
η
d−1 has an limit as d→∞, as demonstrated empirically in
Figure 2. We can use this limit, which is easy to evaluate,
as a proxy of η in computing the proposed loss.

Theorem 3.4.

lim
d→∞

η(I(t ≥ T ), ||xi||)
d− 1

=
(T/||xi||)2

1− (T/||xi||)2
(3)

Proof. See Appendix Section 7.3.

As special cases, when T = 0, η(I(t ≥ 0), ||xi||) = 1
which implies parallel and orthogonal errors are weighted
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Figure 2. The ratio η(I(t ≥ T = 0.2), ‖x‖ = 1)/(d − 1) in
Theorem 3.4 computed analytically as a function of d quickly
approaches the limit defined in Equation (3).

equally. When T = ‖|xi||, we have η(I(t ≥
||xi||), ||xi||) = ∞ which indicates we should only con-
sider parallel error.

Theorem 3.2 shows that the weight of each datapoint’s par-
allel and orthogonal quantization errors are dependent on
||xi||. However, when the database has constant norm, i.e.
||xi|| = c, we can use the following simplified form:

n∑
i=1

`(xi, x̃i, I(t ≥ T ))

∝ η(w, c)

n∑
i=1

||r‖(xi, x̃i)||2 +

n∑
i=1

||r⊥(xi, x̃i)||2

4. Application to Quantization Techniques
In this section we consider the codebook learning and quan-
tization procedure for our proposed anisotropic loss func-
tion. In the previous sections, we established that the loss
function, `(xi, x̃i, w) leads to a weighted combination of
parallel quantization error and orthogonal quantization error.
In practice, we can choose a fixed η according to the choice
of w such as the one suggested in Section 3.2.

In vector quantization, we first construct a dictionary C =
{c1, c2, . . . , ck}. To quantize a vector x we replace x with
one of the codewords. Typically, the quantized vector x̃min-
imizes some loss function: x̃ = arg minc1,c2,...,ck L(xi, ci).

After we quantize a database of n points, we can calculate
the dot product of a query vector q with all quantized points
in O(kd + n) time. This is much better than the O(nd)
time required for the original unquantized database. We
achieve theO(kd+n) runtime by computing a lookup table
containing the inner product of the q with each of the k
codewords in O(kd) time. We then do a table lookup for
each of the n datapoints to get their corresponding inner
products.

In order to construct the dictionary C, we need to optimize
the choice of codewords over the loss function. For `2-
reconstruction loss, the optimization problem becomes

min
c1,c2,...,ck∈Rd

∑
xi

min
x̃i∈{c1,c2,...,ck}

‖xi − x̃i‖2.

This is exactly the well-studied k-means clustering objective,
which is often solved using Lloyd’s algorithm.

If, as in the previous section, we have our loss function
`(x, x̃) = hi,‖‖r‖(xi, x̃i)‖2 +hi,⊥‖r⊥(xi, x̃i)‖2 for appro-
priate scaling parameters hi,‖, hi,⊥, we obtain a new ob-
jective function we call the anisotropic vector quantization
problem.

Definition 4.1. Given a dataset x1, x2, . . . , xn of points in
Rd, scaling parameters hi,‖, hi,⊥ for every datapoint xi, and
k codewords, the anisotropic vector quantization problem is
finding the k codewords that minimize the objective function

min
c1,...,ck

∑
xi

min
x̃i∈{c1,...,ck}

hi,‖‖r‖(xi, x̃i)‖2

+hi,⊥‖r⊥(xi, x̃i)‖2.

Next we develop an iterative algorithm to optimize the
anisotropic vector quantization problem. Similar to Lloyd’s
algorithm (Lloyd, 1982), our algorithm iterate between par-
tition assignment step and codebook update step:

1. (Initialization Step) Initialize codewords c1, c2, . . . , ck
to be random datapoints sampled from x1 . . . xn.

2. (Partition Assignment Step) For each datapoint xi find
its codeword x̃i = arg minx̃i∈{c1,...,ck} `(xi, x̃i). This
can be done by enumerating all k possile choices of
codewords.

3. (Codebook Update Step) For every codeword cj , let
Xj be all datapoints xi such that x̃i = cj . Update cj
by

cj ← arg min
c∈Rd

∑
xi∈Xj

`(xi, c).

4. Repeat Step 2 and Step 3 until convergence to a fixed
point or maximum number of iteration is reached.

In each iteration, we need perform update step for each of
the codeword. Given a partition of the datapoints Xj , we
can find the optimal value of the codeword cj that minimizes
the following objective:

cj = arg min
c∈Rd

∑
x∈Xj

hi,‖‖r‖(xi, c)‖2 + hi,⊥‖r⊥(xi, c)‖2.

(4)

By setting gradient respect to cj to zero, we obtain the
following update rule:
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Theorem 4.2. Optimal codeword cj can be obtained in
closed form by solving the optimization problem in Equation
(4) for a partition Xj . The update rule for the codebook is

c∗j =

(
I
∑
xi∈Xj

hi,⊥+

∑
xi∈Xj

hi,‖ − hi,⊥
||xi||2

xix
T
i

)−1 ∑
xi∈Xj

hi,⊥xi

Proof. See Section 7.4 of the Appendix for the proof.

As expected, we see that when all hi,‖ = hi,⊥, our code-
word update is equivalent to finding the weighted average
of the partition. Furthermore, if w(t) = 1, the update rule
becomes finding the average of datapoints in the partition,
same as standard k-means update rule. Additionally, since
there are only a finite number of partitions and at every
iteration the loss function decreases or stays constant, our
solution will eventually converge to a fixed point.

4.1. Product Quantization

In vector quantization with a dictionary of size k, we quan-
tize each datapoint into one of k possible codewords. We
can think of this as encoding each datapoint with one dimen-
sion with k possible states.

With product quantization we encode each datapoint into
an M dimensional codeword, each with k possible states.
This allows us to represent kM possible codewords, which
would not be scalable with vector quantization. To do this,
we split each datapoint x into M subspaces each of dimen-
sion d/M : x = (x(1), x(2), . . . , x(m)). We then create M
dictionaries C(1), C(2), . . . , C(m), each with k codewords
of dimension d/M . Each datapoint would then be encoded
with M dimensions, with every dimension taking one of k
states.

To calculate distances with product quantization, for every
dictionary C(m) we calculate the partial dot product of the
relevant subspace of the query with every codeword in the
dictionary. The final dot product is obtain by sum up all M
partial dot product. We can then calculate the dot product
with m quantized datapoints in time O(kd+mn).

Using our anisotropic loss function `(xi, x̃i) =
hi,‖‖r‖(xi, x̃i)‖2 + hi,⊥‖r⊥(xi, x̃i)‖2 we obtain a new
objective function for product quantization we call the
anisotropic product quantization problem.

Definition 4.3. Given a dataset x1, x2, . . . , xn of points
in Rd, a scaling parameter η, a number M of dictionaries
each with elements of size d/M and k codewords in each
dictionary, the anisotropic product quantization problem is

to find the M dictionaries that minimizes

min
C(m)⊆Rd/M

|C(m)|=k

∑
xi

min
x̃i∈

∏
m C(m)

hi,‖‖r‖(xi, x̃i)‖2

+ hi,⊥‖r⊥(xi, x̃i)‖2.

We again consider an iterative algorithm for the problem.
We first initialize all quantized datapoints with some ele-
ment from every dictionary. We then consider the following
iterative procedure:

1. (Initialization Step) Select a dictionary C(m) by sam-
pling from {x(m)

1 , . . . x
(m)
n }.

2. (Partition Assignment Step) For each datapoint xi, up-
date x̃i by using the value of c ∈ C(m) that minimizes
the anisotropic loss of x̃i.

3. (Codebook Update Step) Optimize the loss function
over all codewords in all dictionaries while keeping
every dictionaries partitions constant.

4. Repeat Step 2 and Step 3 until convergence to a fixed
point or maximum number of iteration is reached.

We can perform the update step efficiently since once the
partitions are fixed the update step minimizes a convex loss,
similar to that of vector quantization. We include details in
Section 7.5 of the Appendix. Additionally, since there are a
finite number of partition assignment and at every step the
loss function decreases or stays constant, our solution will
eventually converge to a fixed point. We note that we can
also optionally initialize the codebook by first training the
codebook under regular `2-reconstruction loss, which speed
up training process.

5. Experiments
In this section, we show our proposed quantization objective
leads to improved performance on maximum inner prod-
uct search. First, we fix the quantization mechanism and
compare traditional reconstruction loss with our proposed
loss to show that score-aware loss leads to better retrieval
performance and more accurate estimation of maximum
inner product values. Next, we compare in fixed-bit-rate
settings against QUIPS and LSQ, which are the current
state-of-the-art for many MIPS tasks. Finally, we analyze
the end-to-end MIPS retrieval performance of our algorithm
in terms of its speed-recall trade-off in a standardized hard-
ware environment. We used the benchmark setup from
ann-benchmarks.com, which provides 11 competitive
baselines with pre-tuned parameters. We plot each algo-
rithm’s speed-recall curve and show ours achieves the state-
of-the-art.

ann-benchmarks.com
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(a)
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Figure 3. (a) The retrieval Recall1@10 for different values of
the threshold T . We see that for T = 0.2 (corresponding to
η = 4.125) our proposed score-aware quantization loss achieves
significantly better Recall than traditional reconstruction loss. (b)
The relative error of inner product estimation for true Top-1 on
Glove1.2M dataset across multiple number of bits settings. We
see that our proposed score-aware quantization loss reduces the
relative error compared to reconstruction loss.

5.1. Direct comparison with reconstruction loss

We compare our proposed score-aware quantization loss
with the traditional reconstruction loss by fixing all param-
eters other than the loss function in the following experi-
ments.

We use Glove1.2M which is a collection of 1.2 million
100-dimensional word embeddings trained as described in
(Pennington et al., 2014). See Section 7.8 of the Appendix
for our rationale for choosing this dataset. For all experi-
ments we choose w(t) = I(t ≥ T ). The Glove dataset is
meant to be used with a cosine distance similarity metric,
while our algorithm is designed for the more general MIPS
task. MIPS is equivalent to cosine similarity search when
all datapoints are equal-norm, so we adopt our technique to
cosine similarity search by unit-normalizing all datapoints
at training time.

We first compare the two losses by their Recall1@10 when
used for product quantization on Glove1.2M, as shown
in Figure. 3a. We learn a dictionary by optimizing product

quantization with reconstruction loss. We then quantize
datapoints two ways, first by minimizing reconstruction
loss and then by minimizing score-aware loss. We see that
score-aware quantization loss achieves significant recall
gains as long as T is chosen reasonably. For all subsequent
experiments, we set T = 0.2, which by the limit in Equation
(3) corresponds to a value of η = 4.125.

Next we look at the accuracy of the estimated top-1 inner
product as measured by relative error: | 〈q,x〉−〈q,x̃〉〈q,x〉 |. This
is important in application scenarios where an accurate es-
timate of 〈q, x〉 is needed, such as softmax approximation,
where the inner product values are often logits later used
to compute probabilities. One direct consequence of score-
aware loss functions is that the objective weighs pairs by
their importance and thus leads to lower estimation error on
top-ranking pairs. We see in Figure. 3b that our score-aware
loss leads to smaller relative error over all bitrate settings.

Datasets other than Glove demonstrate similar performance
gains from score-aware quantization loss. See Section 7.6
of the Appendix for results on the Amazon-670k extreme
classification dataset.

5.2. Maximum inner product search retrieval

Next, we compare our MIPS retrieval performance against
other quantization techniques at equal bitrate. We com-
pare to LSQ (Martinez et al., 2018) and all three variants
of QUIPS (Guo et al., 2016b). In Figure 4a we measure
the performance at fixed bitrates of 100 and 200 bits per
datapoint. Our metric is Recall 1@N, which corresponds to
the proportion of queries where the top N retrieved results
contain the true top-1 datapoint. Our algorithm using score-
aware loss outperforms other algorithms at both bitrates and
all ranges of N .

Other quantization methods may also benefit from using
score-aware quantization loss. For example, binary quanti-
zation techniques such as (Dai et al., 2017) use reconstruc-
tion loss in their original paper, but can be easily adapted to
the proposed loss by a one line change to the loss objective.
We show results which illustrate the improvement of such a
change in Section 7.7 of Appendix.

5.3. Recall-Speed benchmark

Fixed-bit-rate experiments mostly compare asymptotic be-
havior and often overlook preprocessing overhead such
as learned rotation or lookup table computation, which
can be substantial. To evaluate effectiveness of MIPS al-
gorithms in a realistic setting, it is important to perform
end-to-end benchmarks and compare speed-recall curves.
We adopted the methodology of public benchmark ANN-
Benchmarks (Aumüller et al., 2019), which plots a com-
prehensive set of 11 algorithms for comparison, including
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(a) MIPS recall on Glove1.2M.
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Figure 4. (a) Recall 1@N curve on Glove1.2M comparing with variants of QUIPS (Guo et al., 2016b) and LSQ (Martinez et al., 2018)
on MIPS tasks. We see that our method improves over all of these methods. (b) Recall-Speed benchmark with 11 baselines from (Aumüller
et al., 2019) on Glove1.2M. The parameters of each baseline are pre-tuned and released on: http://ann-benchmarks.com/.
We see that our approach is the fastest in the high recall regime.

faiss (Johnson et al., 2017) and hnswlib (Malkov and
Yashunin, 2016).

Our benchmarks are all conducted on an Intel Xeon W-2135
with a single CPU thread, and followed the benchmark’s pro-
tocol. Our implementation builds on product quantization
with the proposed quantization and SIMD based ADC (Guo
et al., 2016b) for distance computation. This is further
combined with a vector quantization based tree (Wu et al.,
2017). Our implementation is open-source and available
at https://github.com/google-research/
google-research/tree/master/scann and
furthermore the exact configurations used to produce our
benchmark numbers are part of the ANN-Benchmarks
GitHub repository. Figure 4b shows our performance on
Glove1.2M significantly outperforms competing methods
in the high-recall region.

6. Conclusion
In this paper, we propose a new quantization loss function
for inner product search, which replaces traditional recon-
struction error. The new loss function is weighted based on
the inner product values, giving more weight to the pairs
of query and database points with higher inner product val-

ues. The proposed loss function is theoretically proven and
can be applied to a wide range of quantization methods,
for example product and binary quantization. Our exper-
iments show superior performance on retrieval recall and
inner product value estimation compared to methods that
use reconstruction error. The speed-recall benchmark on
public datasets further indicates that the proposed method
outperforms state-of-the-art baselines which are known to
be hard to beat.
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7. Appendix
7.1. Proof of Theorem 3.2

We first prove the following lemma:

Lemma 7.1. Suppose we are given a datapoint x and its quantization x̃. If q is uniformly spherically distributed, then

Eq[〈q, x− x̃〉2|〈q, x〉 = t] =
t2

||x||2
||r‖(x, x̃)||2 +

1− t2

||x||2

d− 1
||r⊥(x, x̃)||2

with r‖ and r⊥ defined as in section 3.1.

Proof. First, we can decompose q := q‖ + q⊥ with q‖ := 〈q, x〉 · x
||x|| and q⊥ := q − q‖ where q‖ is parallel to x and q⊥ is

orthogonal to x. Then, we have

Eq[〈q, x− x̃〉2|〈q, x〉 = t] = Eq[〈q‖ + q⊥, r‖(x, x̃) + r⊥(x, x̃)〉2|〈q, x〉 = t]

= Eq[(〈q‖, r‖(x, x̃)〉+ 〈q⊥, r⊥(x, x̃)〉)2|〈q, x〉 = t]

= Eq[〈q‖, r‖(x, x̃)〉2|〈q, x〉 = t] + Eq[〈q⊥, r⊥(x, x̃)〉2|〈q, x〉 = t], (5)

The last step uses the fact that Eq[〈q‖, r‖(x, x̃)〉〈q⊥, r⊥(x, x̃)〉|〈q, x〉 = t] = 0 due to symmetry. The first term of

(5), Eq[〈q‖, r‖(x, x̃)〉2|〈q, x〉 = t] = ‖r‖(x, x̃)‖2Eq[‖q‖‖2|〈q, x〉 = t] =
‖r‖‖2t2

‖x‖2 . For the second term, since q⊥

is uniformly distributed in the (d − 1) dimensional subspace orthogonal to x with the norm
√

1− t2

‖x‖2 , we have

Eq[〈q⊥, r⊥(x, x̃)〉2|〈q, x〉 = t] =
1− t2

‖x‖2

d−1 ||r⊥(x, x̃)||2. Therefore

Eq[〈q, r(x, x̃)〉2|〈q, x〉 = t] =
t2

‖x‖2
||r‖(x, x̃)||2 +

1− t2

‖x‖2

d− 1
||r⊥(x, x̃)||2.

Proof of Theorem 3.2. We can expand `(xi, x̃i, w) as

∫ ||xi||

−||xi||
w(t)Eq[〈q, xi − x̃i〉2|〈q, xi〉 = t]dP(〈q, xi〉 ≤ t)

Let θ := arccos
t

||xi||
so t = ||xi|| cos θ. Because we are assuming q is uniformly spherically distributed, dP(〈q,x〉≤t)

dt is

proportional to the surface area of (d − 1)-dimensional hypersphere with a radius of sin θ. Thus we have dP(〈q,x〉=t)
dt ∝

Sd−1 sind−2 θ, where Sd−1 is the surface area of (d− 1)-sphere with unit radius. Our integral can therefore be written as:

∫ π

0

w(||xi|| cos θ)Eq[〈q, xi − x̃i〉2|〈q, xi〉 = ||xi|| cos θ] sind−2 θdθ.

Using our above lemma this simplifies to

∫ π

0

w(||xi|| cos θ)

(
cos2 θ||r‖(x, x̃)||2 +

sin2 θ

d− 1
||r⊥(x, x̃)||2

)
sind−2 θdθ.

From here we can clearly see that



Accelerating Large-Scale Inference with Anisotropic Vector Quantization

`(xi, x̃i, w) = h‖(w, ||xi||)||r‖(xi, x̃i)||2 + h⊥(w, ||xi||)||r⊥(xi, x̃i)||2,

h‖ :=

∫ π

0

w(||xi|| cos θ)(sind−2 θ − sind θ)dθ,

h⊥ :=
1

d− 1

∫ π

0

w(||xi|| cos θ) sind θdθ

as desired.

7.2. Proof of Theorem 3.3

Proof of Theorem 3.3. Note that h‖ and h⊥ equal zero if and only if w(t) = 0 for t ∈ [−||xi||, ||xi||]. Otherwise both

quantities are strictly positive so it is equivalent to prove that
h‖(w, ||xi||)
h⊥(w, ||xi||)

≥ 1 with equality if and only if w is constant.

h‖(w, ||xi||)
h⊥(w, ||xi||)

=

∫ π

0

w(||xi|| cos θ)(sind−2 θ − sind θ)dθ

1

d− 1

∫ π

0

w(||xi|| cos θ) sind θdθ

= (d− 1)

(∫ π
0
w(||xi|| cos θ) sind−2 θdθ∫ π

0
w(||xi|| cos θ) sind θdθ

− 1

)

Define Id :=
∫ π
0
w(||xi|| cos θ) sind θdθ. Our objective is to prove (d−1)

(
Id−2
Id
− 1

)
≥ 1 or equivalently

Id−2
Id
≥ d

d− 1
.

To do this we use integration by parts on Id:

Id =− w(||xi|| cos θ) cos θ sind−1 θ
∣∣∣π
0
+∫ π

0

cos θ
[
w(||xi|| cos θ)(d− 1) sind−2 θ cos θ − w′(||xi|| cos θ)||xi|| sind θ

]
dθ

=(d− 1)

∫ π

0

w(||xi|| cos θ) cos2 θ sind−2 θ − ||xi||
∫ π

0

w′(||xi|| cos θ) cos θ sind θdθ

=(d− 1)Id−2 − (d− 1)Id − ||xi||
∫ π

0

w′(||xi|| cos θ) cos θ sind θdθ

We now show that
∫ π
0
w′(||xi|| cos θ) cos θ sind θdθ ≥ 0 with equality if and only if w is constant. As a prerequisite for this

theorem w(t) = 0 for t < 0 so our integral simplifies to
∫ π/2
0

w′(||xi|| cos θ) cos θ sind θdθ ≥ 0. From 0 to π/2 both sine
and cosine are non-negative. Since w is non-decreasing in this range, w′ ≥ 0 and therefore our integral is non-negative. The
integral equals zero if and only if w′ = 0 over the entire range of t which implies w is constant.

Applying our inequality to equation 7.2 we get
Id−2
Id
≥ d

d− 1
as desired.

7.3. Proof of Results for w(t) = I(t ≥ T )

Proof of Equation 3. Let α := arccos(T/||xi||). If we do the same analysis as section 7.2 but specialized for w(t) = I(t ≥
T ) we find that Id =

∫ α
0

sind θdθ and

dId = (d− 1)Id−2 − cosα sind−1 α.

From the CauchySchwarz inequality for integrals, we have
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(∫ α

0

sin
d+2
2 θ sin

d−2
2 θdθ

)2
≤
∫ α

0

sind+2θdθ

∫ α

0

sind−2 θdθ

Rearranging this we have Id
Id+2

≤ Id−2

Id
, which proves that Id−2

Id
is monotonically non-increasing as d increases. From

section 7.2 we already have a lower bound Id−2

Id
> 1. Since the ratio is monotonically non-increasing, limd→∞

Id
Id+2

exists.

Dividing both sides of equation 7.3 by dId, we have

1 =
− cosα sind−1 α

dId
+

(d− 1)Id−2
dId

Using our above analysis we know that lim
d→∞

(d− 1)Id−2
dId

exists so therefore lim
d→∞

cosα sind−1 α

dId
> 0 also exists. Further-

more,

lim
d→∞

cosα sind−1 α
dId

cosα sind−3 α
(d−2)Id−2

= 1⇒ lim
d→∞

(d− 2)Id−2
dId

=
1

sin2 α

Finally we have lim
d→∞

η(I(t ≥ T ), ||xi||)
d− 1

=
1

sin2 α
− 1 =

(T/||xi||)2

1− (T/||xi||)2
, and this proves equation 3.

7.4. Proof of Theorem 4.2

Proof of Theorem 4.2. Consider a single point xi with r‖ := r‖(xi, x̃i) = 1
‖x‖2xix

T
i (xi − x̃i) and r⊥ := r⊥(xi, x̃i) =

xi − x̃i − r‖. We have that

‖r⊥‖2 = (xi − x̃i − r‖)T (xi − x̃i − r‖)
= ‖xi‖2 + ‖x̃i‖2 − 2xTi x̃i − 2rT‖ (xi − x̃i) + ‖r‖‖2

= ‖xi‖2 + ‖x̃i‖2 − 2xTi x̃i − ‖r‖‖2, (6)

where we use the fact that xi − x̃i = r‖ + r⊥ and r‖ is orthogonal to r⊥.

We also have

‖r‖‖2 =
1

‖xi‖4
(
xi(x− x̃i)Txi

)T (
xi(x− x̃i)Txi

)
=

1

‖xi‖4
xTi (xi − x̃i)xTi xi(xi − x̃i)Txi

=
1

‖xi‖2
xTi (xi − x̃i)(xi − x̃i)Txi

= ‖xi‖2 +
x̃Ti xix

T
i x̃i

‖xi‖2
− 2xTi x̃i. (7)

Combining Equations (6) and (7), we have that

hi,‖‖r‖‖2 + hi,⊥‖r⊥‖2 = x̃Ti

(
(hi,‖ − hi,⊥)

xix
T
i

‖xi‖2
+ hi,⊥I

)
x̃i − 2hi,‖x

T
i x̃i + hi,‖‖xi‖2.

Ignoring the constant term hi,‖‖xi‖2 and summing over all datapoints xi that have x̃ as a center, we have that the total loss
is equivalent to

x̃T

(∑
i

(hi,‖ − hi,⊥)
xix

T
i

‖xi‖2
+ hi,⊥I

)
x̃− 2

(∑
i

hi,‖xi

)T
x̃. (8)
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Since we established in Theorem 3.3 that hi,‖ ≥ hi,⊥, we have that the loss function is a convex quadratic function and thus
we can calculate the optimal value of x̃ as

x̃ =

(∑
i

(hi,‖ − hi,⊥)
xix

T
i

‖xi‖2
+ hi,⊥I

)−1(∑
i

hi,‖xi

)
.

7.5. Codebook Optimization in Product Quantization

Let c be a vector with all dictionary codewords. We can get a quantized point x̃i by calculatingBc, whereB is a {0, 1}-matrix
with dimensions d× dk that selects the relevant codewords.

For example, suppose {(−1,−1), (1, 1)} are our codewords for the first two dimensions and {(−2,−2), (2, 2)} are our
codewords for the next two dimensions. We have our vectorized dictionary c = (−1,−1, 1, 1,−2,−2, 2, 2). If we want to
represent (−1,−1, 2, 2), we set B to be 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

 .

Similarly, if we want to represent (1, 1,−2,−2) we set B to be
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

 .

We can now write x̃i as x̃i = Bic for some matrix Bi.

To minimize our loss function over c, we start by summing over Equation 8 and ignoring all constant terms to get

cT

(∑
i

BTi

(
(hi,‖ − hi,⊥)

xix
T
i

‖xi‖2
+ hi,⊥I

)
Bi

)
c− 2

(∑
i

hi,‖Bixi

)
c.

This is again a convex quadratic minimization problem over c and can be solved efficiently. Specifically the matrix

∑
i

BTi

(
(hi,‖ − hi,⊥)

xix
T
i

‖xi‖2
+ hi,⊥I

)
Bi

will be full rank if we observe every codeword at least once. We can then find the optimal value of c with

c =

(∑
i

BTi

(
(hi,‖ − hi,⊥)

xix
T
i

‖xi‖2
+ hi,⊥I

)
Bi

)−1(∑
i

hi,‖Bixi

)
.

7.6. Results on the Amazon-670k Extreme Classification Dataset

Extreme classification with a large number of classes requires evaluating the last layer (classification layer) with all
possible classes. When there are O(M) classes, this becomes a major computation bottleneck as it involves a huge matrix
multiplication followed by Top-K. Thus this is often solved using Maximum Inner Product Search to accelerate inference.
We evaluate our methods on extreme classification using the Amazon-670k dataset (Bhatia et al., 2015). An MLP classifier
is trained over 670,091 classes, where the last layer has a dimensionality of 1,024. The retrieval performance of product
quantization with traditional reconstruction loss and with score-aware quantization loss are compared in Table 1.
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Bitrate 1@1 1@10 1@100 Bitrate 1@1 1@10 1@100

256 bits, PQ 0.652 0.995 0.999 512 bits, PQ 0.737 0.998 1.000
256 bits, Ours 0.656 0.996 1.000 512 bits, Ours 0.744 0.997 1.000

1024 bits, PQ 0.778 1.000 1.000 2048 bits, PQ 0.782 1.000 1.000
1024 bits, Ours 0.812 1.000 1.000 2048 bits, Ours 0.875 1.000 1.000

Table 1. Amazon-670k extreme classification performance. The benefits of anisotropic vector quantization on Recall 1@Nare especially
evident at lower bitrates and lower N .

7.7. Results on Binary Quantization

Another popular family of quantization function is binary quantization. In such a setting, a function h(x) : Rd → {0, 1}h is
learned to quantize datapoints into binary codes, which saves storage space and can speed up distance computation. There
are many possible ways to design such a binary quantization function, and some (Carreira-Perpinán and Raziperchikolaei,
2015; Dai et al., 2017) uses reconstruction loss.

We can apply our score-aware quantization loss to these approaches. We follow the setting of Stochastic Generative Hashing
(SGH) (Dai et al., 2017), which explicitly minimizes reconstruction loss and has been shown to outperform earlier baselines.
In their paper, a binary auto-encoder is learned to quantize and dequantize binary codes:

x̃ = g(h(x)); where h(x) ∈ {0, 1}h

where h(·) is the “encoder” part which binarizes original datapoint into binary space and g(·) is the “decoder” part which
reconstructs the datapoints given the binary codes. The authors of the paper uses h(x) = sign(WT

h x+ bh) as the encoder
function and g(h) = WT

g h as the decoder functions. The learning objective is to minimize the reconstruction error of
||x− x̃||2, and the weights in the encoder and decoder are optimized end-to-end using standard stochastic gradient descent.
We can instead use our score-aware quantization loss. We show below the results of SGH and SGH with our score-aware
quantization loss in Table 2 on the SIFT1M dataset (Jegou et al., 2011). We see that adding our score-aware quantization
loss greatly improves performance.

Recall k@k 1@1 1@10 10@10 10@100
64 bits, SGH 0.028 0.096 0.053 0.220
64 bits, SGH-score-aware 0.071 0.185 0.093 0.327
128 bits, SGH 0.073 0.195 0.105 0.376
128 bits, SGH-score-aware 0.196 0.406 0.209 0.574
256 bits, SGH 0.142 0.331 0.172 0.539
256 bits, SGH-score-aware 0.362 0.662 0.363 0.820

Table 2. We compare Stochastic Generative Hashing (Dai et al., 2017) trained with reconstruction loss (SGH) and Stochastic Generative
Hashing trained with our score-aware quantization loss (SGH-score-aware) on the SIFT1M dataset. We see that using our score-aware
loss greatly improves the recall of Stochastic Generative Hashing.

7.8. Dataset Selection for MIPS evaluation

In this section we consider dataset choices for benchmarking MIPS systems. In modern large-scale settings, the vectors in
the database are often created with neural network embeddings learned by minimizing some training task. This typically
leads to the following nice properties:

• Low correlation across dimensions.

• Equal variance in each dimension.

Since our target application is retrieval in such settings, we want our benchmarking dataset to have these properties. This
will allow our metrics to better inform how our approach will work in practice.
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Datasets that have been widely used for evaluating MIPS systems include SIFT1M/1B, GIST1M, Glove1.2M,
Movielens, and Netflix. We see in Figure 5 that only Glove1.2M has the properties we want in a benchmarking
dataset.

SIFT1M, SIFT1B, and GIST1M are introduced by (Jegou et al., 2011) to illustrate the use of product quantization. SIFT
is a keypoint descriptor while GIST is image-level descriptor which have been hand-crafted for image retrieval. These
vectors have a high correlation between dimensions and have a high degree of redundancy. Thus the intrinsic dimensions of
SIFT1M and GIST are much lower than its dimensionality.

Movielens and Netflix dataset are formed from the SVD of the rating matrix of Movielens and Netflix websites,
respectively. This is introduced by (Shrivastava and Li, 2014) for MIPS retrieval evaluation. Following SVD of X =
(UΛ1/2T )(Λ1/2V ), the dimension of these two datasets correspond to the eigenvalues ofX . Thus the variance of dimensions
are sorted by eigenvalues, and the first few dimensions are much more important than later ones. Additionally, the datasets
are 10k - 20k in size and thus should not be considered large-scale.

Glove1.2M is a word embeddings dataset similar to word2vec, which use neural-network style training with a bottleneck
layer. This datasets exhibits less data distribution problems. It is our general observation that bottleneck layers lead to
independent dimensions with similar entropy, making them good datasets for benchmarking for our target retrieval tasks.
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Dataset Size Correlation Variance by dimension

SIFT1M (1000000, 128)

GIST1M (1000000, 960)

MovielensSVD (10681, 150)

NetflixSVD (17770, 300)

Glove1.2M (1183514, 100)

Figure 5. We plot the correlation and variance by dimensions of SIFT1M, GIST1M, MovielensSVD, NetflixSVD, and Glove1.2M.
We see that SIFT1M and GIST1M have strong correlations between dimensions, and thus their intrinsic dimensions are significantly
lower than the original dimensions. We see that MovielensSVD and NetflixSVD suffers from problem of a large variation in the
variance across dimensions. In contrast, Glove1.2M has nearly uncorrelated dimensions and roughly equal variance across dimensions,
making it a good dataset for our target retrieval tasks.


