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Abstract

The Nystbm method is an efficient technique to generate low-rankirapproxima-
tions and is used in several large-scale learning appicstiA key aspect of this method
is the procedure according to which columns are sampled tihemoriginal matrix. In this
work, we explore the efficacy of a variety fiked andadaptivesampling schemes. We
also propose a family odnsemblébased sampling algorithms for the Ny@str method.
We report results of extensive experiments that providetaildd comparison of various
fixed and adaptive sampling techniques, and demonstrateettiermance improvement
associated with the ensemble Nystr method when used in conjunction with either fixed
or adaptive sampling schemes. Corroborating these erafiinclings, we present a theo-
retical analysis of the Nysim method, providing novel error bounds guaranteeing abett
convergence rate of the ensemble Ngstmethod in comparison to the standard Nistr
method.

1. Introduction

A common problem in many areas of large-scale machine learning involviesdex use-

ful and efficient approximation of a large matrix. This matrix may be a kerndélixnased
with support vector machines (Cortes and Vapnik, 1995; Boser et 8R) 1lernel principal
component analysis (Solkopf et al., 1998) or manifold learning (Platt, 2004; Talwalkar
et al., 2008). Large matrices also naturally arise in other applications, keigtering, col-
laborative filtering, matrix completion, robust PCA, etc. For these largeegmroblems,
the number of matrix entries can be in the order of tens of thousands to milli@us, le
ing to difficulty in operating on, or even storing the matrix. An attractive solutmthis
problem involves using the Ny&im method to generate a low-rank approximation of the
original matrix from a subset of its columns (Williams and Seeger, 2000).yAakpect of
the Nystbm method is the procedure according to which the columns are sampled. This
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paper presents an analysis of different sampling techniques for thediymethod both
empirically and theoretically.

In the first part of this work, we focus on variofisedsampling methods. The Nysim
method was first introduced to the machine learning community (Williams and Seeger
2000) using uniform sampling without replacement, and this remains the samitigpd
most commonly used in practice (Talwalkar et al., 2008; Fowlkes et al.,; 289&ilva
and Tenenbaum, 2003; Platt, 2004). More recently, the Ngstnethod has been theoret-
ically analyzed assuming sampling from fixed, non-uniform distributions tneecolumns
(Drineas and Mahoney, 2005; Belabbas and Wolfe, 2009; MahonéyDaineas, 2009).

In this work, we present novel experiments with several real-worldséédacomparing the
performance of the Nysim method when used with uniform versus non-uniform sampling
distributions. Although previous studies have compared uniform andindarm distribu-
tions in a more restrictive setting (Drineas et al., 2001; Zhang et al., 20608)gsults are
the first to compare uniform sampling with the sampling technique for which tretrig
method has theoretical guarantees. Our results suggest that unifoyplirgs in addition

to being more efficient both in time and space, produces more effectivexapations. We
further show the benefits of sampling without replacement. These empindaids help
motivate subsequent theoretical analyses.

The Nystbm method has also been studied empirically and theoretically assuming more
sophisticated iterative selection techniques (Smola andl&mpf, 2000; Fine and Schein-
berg, 2002; Bach and Jordan, 2002). In the second part of thls werprovide a survey of
adaptive techniques that have been suggested for use with thé&ysethod, and present
an empirical comparison across these algorithms. As part of this workyieeupon ideas
of Deshpande et al. (2006), in which an adaptive, error-driverpiag technique with rel-
ative error bounds was introduced for the related problem of matrix gifoje(see Kumar
et al. (2009b) for details). However, this technique requires the fulliratibe available
at each step, and is impractical for large matrices. Hence, we propospla and efficient
algorithm that extends the ideas of Deshpande et al. (2006) for a€apatimpling and uses
only a small submatrix at each step. Our empirical results suggest a fifdmvoeen time
and space requirements, as adaptive techniques spend more time to firuise sobset of
informative columns but provide improved approximation accuracy.

Next, we show that a new family of algorithms based on mixtures of Rgstpproxi-
mations.ensemble Nyshm algorithmsyields more accurate low-rank approximations than
the standard Nystm method. Moreover, these ensemble algorithms naturally fit within dis-
tributed computing environments, where their computational costs are roinghdame as
that of the standard Ny$tm method. This issue is of great practical significance given the
prevalence of distributed computing frameworks to handle large-scal@riggoroblems.

We describe several variants of these algorithms, including one basgchple averaging
of p Nystrom solutions, an exponential weighting method, and a regression methall whic
consists of estimating the mixture parameters of the ensemble using a few coampisd
from the matrix. We also report the results of extensive experiments with #igerithms

1. Portions of this work have previously appeared in the Conferencériificial Intelligence and Statis-
tics (Kumar et al., 2009a), the International Conference on Mach@aerling (Kumar et al., 2009b) and
Advances in Neural Information Processing Systems (Kumar etG199.
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on several data sets comparing different variants of the ensemblehyatgorithms and
demonstrating the performance improvements gained over the standardmlysathod.

Finally, we present a theoretical analysis of the Nystimethod, namely bounds on the
reconstruction error for both the Frobenius norm and the spectral.n@ve first present
a novel bound for the Nysim method as it is often used in practice, i.e., using uniform
sampling without replacement. We next extend this bound to the ensembl&myaigo-
rithms, and show these novel generalization bounds guarantee a battergence rate for
these algorithms in comparison to the standard Nystmethod.

The remainder of the paper is organized as follows. Section 2 introdasis dhef-
initions, provides a short survey on related work and gives a briefeptation of the
Nystrom method. In Section 3, we study various fixed sampling schemes used with the
Nystrom method. In Section 4, we provide a survey of various adaptive taobsigsed
for sampling-based low-rank approximation and introduce a novel agagaimpling algo-
rithm. Section 5 describes a family of ensemble Nystialgorithms and presents extensive
experimental results. We present novel theoretical analysis in Section 6.

2. Preliminaries

Let T € R%*® be an arbitrary matrix. We defif€V), j = 1...b, as thejth column
vector of T, T(;), i = 1...a, as theith row vector of T and||-|| the /3 norm of a vec-

tor. FurthermoreT'(“J) refers to theith throughjth columns ofT andT;.;) refers to the

ith throughjth rows of T. If rank(T) = r, we can write the thin Singular Value De-
composition (SVD) of this matrix a& = U737V whereX is diagonal and contains
the singular values oT" sorted in decreasing order aftdl; € R**" and Vy € Rb*"
have orthogonal columns that contain the left and right singular vectdfsamrrespond-

ing to its singular values. We denote [, the ‘best’ rankk approximation toT, i.e.,

Ty = argminy cgaxt pani(v)=k|'T — V||¢, where¢ € {2, F} and||-||» denotes the spectral
norm and||-|| 7 the Frobenius norm of a matrix. We can describe this matrix in terms of its
SVD asTy, = UT7k2T7kV}k whereXr ;, is a diagonal matrix of the top singular values

of T andUyz; andVry are the matrices formed by the associated left and right singular
vectors.

Now letK € R™*"™ be a symmetric positive semidefinite (SPSD) kernel or Gram matrix
with rank(K) = r < n, i.e. a symmetric matrix for which there exists Xnc RV*" such
thatK = X'X. We will write the SVD of K asK = UXU', where the columns
of U are orthogonal an®& = diag(oy,...,o0,) is diagonal. The pseudo-inverse Kf

is defined aK+ = Y], a;lU(t)U(t)T, andKt = K~! whenK is full rank. For
k<rKp=3rF, o UOU®O " — U, %, U] is the ‘best’ rankk approximation tok,
ie., K, = argminK,GRnxn’rank(K,):kHK — K’HEE{Q,F}, with [|[K — Kg|l2 = ox41 and
|IK — Ki|F = y/>i—107 (Golub and Loan, 1983).

We will be focusing on generating an approximatinof K based on a sample of
I < n of its columns. For now, we assume that the sampléaflumns is given to us,
though the focus of this paper will be on various methods for selecting csluinet C
denote the: x [ matrix formed by these columns aWl thel x [ matrix consisting of the
intersection of thesecolumns with the correspondirigows of K. Note thatW is SPSD
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sinceK is SPSD. Without loss of generality, the columns and ronK @fan be rearranged
based on this sampling so tHdtandC be written as follows:

T

K — {w K], Q

W
and C = .
Koy KQQ] [ ]

Koy

2.1 Nystrom method

The Nystom method use®V and C from (1) to approximatd<. Assuming a uniform
sampling of the columns, the Nystn method generates a rahlapproximatiorf{ of K
for k < n defined by: N

K"’ =CW/C" =K, (2)
whereW,, is the besk-rank approximation oW with respect to the spectral or Frobenius
norm andeF denotes the pseudo-inverséWf,. The Nystdbm method thus approximates
the topk singular valuesX;) and singular vectord{;) of K as:

nys n STNnYs l
S = (7)2% and UM = \/;CUWEM. 3)

Whenk = [ (or more generally, whenevér > rank(C)), this approximation perfectly
reconstructs three blocks &, andKo5 is approximated by the Schur Complemenit
in K:

4)

KV = CW+CT = [ W Ky ] .

Ky Ko WTKoy
Since the running time complexity of SVD W is in O(kl?) and matrix multiplication

with C takesO(kin), the total complexity of the Nysbm approximation computation is in
O(kin).

2.2 Related Work

There has been a wide array of work on low-rank matrix approximation witieénnu-
merical linear algebra and computer science communities, much of which basirbe
spired by the celebrated result of Johnson and Lindenstrauss @ioand Lindenstrauss,
1984), which showed that random low-dimensional embeddings peeEeiclidean geom-
etry. This result has led to a family of random projection algorithms, whichl\egopro-
jecting the original matrix onto a random low-dimensional subspace (Papddunetral.,
1998; Indyk, 2006; Liberty, 2009). Alternatively, SVD can be useddoaerate ‘optimal’
low-rank matrix approximations, as mentioned earlier. However, both tttmramrojec-
tion and the SVD algorithms involve storage and operating on the entire inpux n&#D

is more computationally expensive than random projection methods, thoitgarreee lin-
ear inn in terms of time and space complexity. When dealing with sparse matrices, there
exist less computationally intensive techniques such as Jacobi, Arnolalbjdheand more
recent randomized methods (Golub and Loan, 1983; Gorrell, 2006;lRaithal., 2009;
Halko et al., 2009) for generating low-rank approximations. These mstremplire com-
putation of matrix-vector products and thus require operating on everyzem entry of
the matrix, which may not be suitable for large, dense matrices. Matrix spatifh algo-
rithms (Achlioptas and Mcsherry, 2007; Arora et al., 2006), as the naiggests, attempt
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to sparsify dense matrices to speed up future storage and computatiotahsduthough
they too require storage of the input matrix and exhibit superlinear Bigesme.

Alternatively, sampling-based approaches can be used to generatarkvapproxi-
mations. Research in this area dates back to classical theoretical resultdha for
any arbitrary matrix, the existence of a subsetafolumns for which the error in matrix
projection (as defined in (Kumar et al., 2009b)) can be bounded relatittee optimal
rank-+% approximation of the matrix (Ruston, 1962). Deterministic algorithms such &s ran
revealing QR (Gu and Eisenstat, 1996) can achieve nearly optimal matpgcion errors.
More recently, research in the theoretical computer science communityebasaimed at
deriving bounds on matrix projection error using sampling-based ajppations, includ-
ing additive error bounds using sampling distributions based on the shianeorms of
the columns (Frieze et al., 1998; Drineas et al., 2006a; Rudelson aslayvimn, 2007); rel-
ative error bounds using adaptive sampling techniques (Deshpaatez2fi06; Har-peled,
2006); and, relative error bounds based on distributions derived fhe singular vectors
of the input matrix, in work related to the column-subset selection problem€Bs et al.,
2008; Boutsidis et al., 2009). These sampling-based approximationjalteerisiting
every entry of the matrix in order to get good performance guaranteasyanatrix. How-
ever, as discussed in (Kumar et al., 2009b), the task of matrix projectiolv@s/projecting
the input matrix onto a low-rank subspace, which requires superlinear tichspace with
respect tor and is not always feasible for large-scale matrices.

There does exist, however, another class of sampling-based apptioxiraigorithms
that only store and operate on a subset of the original matrix. For aghitretangular ma-
trices, these algorithms are known as ‘CUR’ approximations (the name ‘CbliRésponds
to the three low-rank matrices whose product is an approximation to the dngatex).
The theoretical performance of CUR approximations has been analgreglaivariety of
sampling schemes, although the column-selection processes associate@sdatartalyses
often require operating on the entire input matrix (Goreinov et al., 199 WaBte1999;
Drineas et al., 2008; Mahoney and Drineas, 2009).

In the context of symmetric positive semidefinite matrices, the Mystmethod is a
commonly used algorithm to efficiently generate low-rank approximations. Nis&dom
method was initially introduced as a quadrature method for numerical integrated to
approximate eigenfunction solutions (Ny@str, 1928; Baker, 1977). More recently, it was
presented in Williams and Seeger (2000) to speed up kernel algorithmsareén stud-
ied theoretically using a variety of sampling schemes (Smola andli&xsf, 2000; Drineas
and Mahoney, 2005; Zhang et al., 2008; Zhang and Kwok, 2009; Ketra., 2009a,b,c;
Belabbas and Wolfe, 2009; Belabbas and Wolfe, 2009; Cortes et &4D; Z@lwalkar and
Rostamizadeh, 2010). It has also been used for a variety of machinengéasks ranging
from manifold learning to image segmentation (Platt, 2004; Fowlkes et al., Za@alkar
et al., 2008). A closely related algorithm, known as the Incomplete Choleskpm-
position (Fine and Scheinberg, 2002; Bach and Jordan, 2002, ,2€@%)}lso be viewed
as a specific sampling technique associated with the Blystnethod (Bach and Jordan,
2005). As noted by Camd and Recht (2009); Talwalkar and Rostamizadeh (2010), the
Nystrom approximation is related to the problem of matrix completion (@arahd Recht,
2009; Cands and Tao, 2009), which attempts to complete a low-rank matrix from a ran-
dom sample of its entries. However, the matrix completion attempts to impute a low-rank
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matrix from a subset of (possibly perturbed) matrix entries, rather thamhses of matrix
columns. This problem is related to, yet distinct from the Nystrmethod and sampling-
based low-rank approximation algorithms in general, that deal with full-naaikices that
are amenable to low-rank approximation. Furthermore, when we havesaccthe under-
lying kernel function that generates the kernel matrix of interest, we earrgte matrix
entries on-the-fly as desired, providing us with more flexibility accessingrigaal ma-
trix.

3. Fixed Sampling

Since the Nystim method operates on a small subsdkof.e., C, the selection of columns
can significantly influence the accuracy of the approximation. In the remaofdhe pa-
per, we will discuss various sampling options that aim to select informativenes from
K. We begin with the most common class of sampling techniques that select colsmns u
ing a fixed probability distribution. The most basic sampling technique invaindgsrm
sampling of the columns. Alternatively, thi column can be sampled non-uniformly with
weight proportional to either its corresponding diagonal elefgn{diagonal samplinjor
the L, norm of the columndolumn-norm samplingDrineas et al., 2006b; Drineas and Ma-
honey, 2005). There are additional computational costs associated &gt tlon-uniform
sampling methodsO(n) time and space requirements for diagonal sampling@fwef)
time and space for column-norm sampling. These non-uniform samplingigeesnare
often presented using sampling with replacement to simplify theoretical anaBaismn-
norm sampling has been used to analyze a general SVD approximatioihetgdfurther,
diagonal sampling with replacement was used by Drineas and Mahongf)(@0d Belab-
bas and Wolfe (2009) to bound the reconstruction error of the Biysinethod In Drineas
and Mahoney (2005) however, the authors suggest that columnsanpling would be a
better sampling assumption for the analysis of the Niystmethod. We also note that Be-
labbas and Wolfe (2009) proposed a family of ‘annealed determinantadfibdisons for
which multiplicative bounds on reconstruction error were derived. Hewean practice,
these distributions cannot be efficiently computed except for species casnciding with
uniform and column-norm sampling. Similarly, although Mahoney and Drii(2889)
present multiplicative bounds for the CUR decomposition (which is quite similareo th
Nystrom method) when sampling from a distribution over the columns based ondtgyer
scores,’ these scores cannot be efficiently computed in practice der$aiale applications.

In the remainder of this section we present novel experimental resultsacmgghe
performance of these fixed sampling methods on several data sets. uBrsitidies have
compared uniform and non-uniform in a more restrictive setting, usingrféypes of ker-
nels and focusing only on column-norm sampling (Drineas et al., 200hgétzal., 2008).
However, in this work, we provide the first comparison that includes dialgesmpling,
which is the non-uniform distribution that is most scalable for large-scaiécapions and
which has been used in some theoretical analyses of thedwysirethod.

2. Although Drineas and Mahoney (2005) claim to weight each columpaptionally toK?, they in fact use
the diagonal sampling we present in this work, i.e., weights proportiorisl;; (Drineas, 2008).
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Name Type n d Kernel
PIE-2.7K || faces (profile)| 2731 | 2304 | linear
PIE-7K faces (front) | 7412 | 2304 | linear
MNIST digitimages | 4000 | 784 | linear
ESS proteins 4728 | 16 RBF
ABN abalones | 4177 8 RBF

Table 1: Description of the datasets and kernels used in fixed and adsgtnpling experi-
ments (Sim et al., 2002; LeCun and Cortes, 1998; Gustafson et al.,2006¢ion
and Newman, 2007)d' denotes the number of features in input space.

3.1 Datasets

We used 5 datasets from a variety of applications, e.g., computer visionia@ody, as
described in Table 1. SPSD kernel matrices were generated by meariraptite datasets
and applying either a linear kernel or RBF kernel. The diagonals (c&spky column
norms) of these kernel matrices were used to calculate diagonal (reshectilumn-norm)
distributions. Note that the diagonal distribution equals the uniform distribditioRBF
kernels since diagonal entries of RBF kernel matrices always eqeal on

3.2 Experiments

We used the datasets described in the previous section to test the appraxacaticacy for
each sampling method. Low-rank approximation&oivere generated using the Nyd&tn

method along with these sampling methods, and we measured the accuraoynstmec-
tion relative to the optimal rank-approximationKj, as:

1K — K[|
—— X

relative accuracy= —
1K — Kl r

100. (5)

Note that the relative accuracy is lower bounded by zero and will approae for good
approximations. We fixe& = 100 for all experiments, a value that captures more than
90% of the spectral energy for each dataset. We first compared the effeesis of the
three sampling techniques using sampling with replacement. The results faiKPdiEe
presented in Figure 1(a) and summarized for all datasets in Figure X{b)eSults across
all datasets show that uniform sampling outperforms all other methods, winilg tmeich
cheaper computationally and space-wise. Thus, while non-uniform sagrtplihniques
may be effective in extreme cases where a few columris aominate in terms off-||2,

this situation does not tend to arise with real-world data, where uniform sagriplimost
effective.

Next, we compared the performance of uniform sampling with and withol&cep
ment. Figure 2(a) illustrates the effect of replacement for the PIE-7Ksdtfar differ-
entl//n ratios. Similar results for the remaining datasets are summarized in Figure 2(b).
The results show that uniform sampling without replacement improves tluezagcof the
Nystrdm method over sampling with replacement, even when sampling les§%hahthe
total columns. In summary, these experimental show that uniform samplinguwitbe
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Uniform vs Non—Uni Sampling: PIE-7K
100—— : ‘ ‘

2 90 Cgeemmmm 4
g BT -
> 80 SOk e
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L X, -
< 70 g }I
> 2 . -
= 60t ---Uni+Rep
© : /,’I - - - Diag+Rep
@x 5o - - -Col-Norm+Rep | |
40— ‘ ‘ ‘
10 20 30 40 50
% of Columns Sampled (I /n)
(a)
[/n | Dataset||Uniform+Rep Diag+Rep|Col-Norm+Rep
PIE-2.7K|| 38.8 (£1.5) |38.3 (+0.9)| 37.0 (£0.9)
PIE-7K || 55.8 (+1.1) |46.4 (£1.7)| 54.2 (£0.9)
5% || MNIST || 47.4 (£0.8) [46.9 (£0.7)| 45.6 (+1.0)
ESS | 45.1(£+2.3) - 41.0 (£2.2)
ABN 47.3 (£3.9) - 44.2 (£1.2)
PIE-2.7K|| 72.3 (£0.9) |65.0 (£0.9)| 63.4 (£1.4)
PIE-7K || 83.5 (+1.1) |69.8 (£2.2)| 79.9 (£1.6)
20%|| MNIST || 80.8 (+£0.5) [79.4 (+0.5)| 78.1 (£0.5)
ESS | 80.1(+0.7) - 75.5 (£1.1)
ABN 77.1 (£3.0) - 66.3 (£4.0)

(b)

Figure 1: (a) Nysidm relative accuracy for various sampling techniques on PIE-7K. (b)
Nystrom relative accuracy for various sampling methods for two valuggof
with £ = 100. Values in parentheses show standard deviation$(fatifferent
runs for a fixedl. ‘+Rep’ denotes sampling with replacement. No error (*-)
is reported for diagonal sampling with RBF kernels since diagonal sampling is
equivalent to uniform sampling in this case.

placement is the cheapest and most efficient sampling technique acress satasets (it
is also the most commonly used method in practice). In Section 6, we preseatratital
analysis of the Nystim method using precisely this type of sampling.

4. Adaptive Sampling

In Section 3, we focused on fixed sampling schemes to create low-ran@xapptions.
In this section, we discuss various sampling options that aim to select morenatfee
columns fromK, while storing and operating on only @{ entries of K. The Sparse
Matrix Greedy Approximation (SMGA) (Smola and Sdkopf, 2000) and the Incomplete
Cholesky Decomposition (ICL) (Fine and Scheinberg, 2002; Bach arathd, 2002) were
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Effect of Replacement: PIE-7K
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o, ‘ ‘
10 20 40
% of Columns Sampled (I/n)

(a)
Dataset | 5% | 10% | 15% | 30% |

PIE-2.7K|[ 0.8 (£.6) | 1.7(£.3) | 2.3(£.9) | 4.4 (+.4)
PIE-7TK | 0.7 (£3) | 1.5(£.3) | 2.1 (£.6) | 3.2(£.3)
MNIST | 1.0 (£5) | 1.9(£.6) | 2.3(£.4) | 3.4 (+.4)

ESS || 0.9(£.9) | 1.8(£9) | 22(£6) | 3.7(£7)
ABN || 0.7 (£1.2) | 1.3 (£1.8) | 2.6 (+1.4) | 4.5 (£1.1)

(b)

Figure 2: Comparison of uniform sampling with and without replacement meas$y the
difference in relative accuracy. (a) Improvement in relative acgui@cPIE-7K
when sampling without replacement. (b) Improvement in relative accurbepw
sampling without replacement across all datasets for vatjoupercentages.

the first such adaptive schemes suggested for the ddystnethod. SMGA is a matching-
pursuit algorithm that randomly selects a new sample at each round frandam subset
of s <« n samples, withs = 59 in practice as per the suggestion of Smola andd$adpf
(2000). The runtime to seleétcolumns is Ol’n), which is of the same order as the
Nystrom method itself when is a constant anfél = [ (see Section 2.1 for details).

Whereas SMGA was proposed as a sampling scheme to be used in conjwritttitire
Nystrom method, ICL generates a low-rank factorizatiorkbon-the-fly as it adaptively
selects columns based on potential pivots of the Incomplete Cholesky Desiimp. ICL
is a greedy, deterministic selection process that generates an approxiofatienform
Kic = XX T whereX e R"*!is low-rank. The runtime of ICL is @¢n). Although ICL
does not generate an approximate SVIKgfit does yield a low-rank approximation &
that can be used with the Woodbury approximation. Moreover, whenl, the Nystbm
approximation generated from thecolumns ofK associated with the pivots selected by
ICL is identical toK (Bach and Jordan, 2005). Related greedy adaptive sampling tech-
nigues were proposed by Ouimet and Bengio (2005) and Liu et al. Y20€& contexts of
spectral embedding and spectral mesh processing, respectively.

More recently, Zhang et al. (2008) and Zhang and Kwok (2009)qeeg a technique
to generate informative columns using centroids resulting fléfimeans clustering, with
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K = [. This algorithm, which uses out-of-sample extensions to generate a/sepogsen-
tative columns oK, has been shown to give good empirical accuracy (Zhang et al., 2008)
Finally, an adaptive sampling technique with strong theoretical foundatamap{ive-ful)

was proposed in Deshpande et al. (2006). It requires a full passghK in each iteration
and is thus inefficient for largK. In the remainder of this section, we first propose a novel
adaptive technique that extends the ideas of Deshpande et al. (2@D6)em present em-
pirical results comparing the performance of this new algorithm with unif@mging as
well as SMGA, ICL,K-means and thadaptive-fulltechniques.

Input: n x n SPSD matrix K), number columns to be chosdi, (nitial distribution over
columns ¢), number columns selected at each iteratign (
Output: [ indices corresponding to columnsKf

SAMPLE-ADAPTIVE(K, n, [, Py, s)
1 R < setofsindices sampled according &

2 t+ L —1 1 number of iterations

3 forie[l...t]do

4 P; < UPDATE-PROBABILITY-FULL (R)

5 R; + set ofs indices sampled according 1
6 R+ RUR,;

7 return R

UPDATE-PROBABILITY-FULL (R)

1 C’ + columns ofK corresponding to indices iR
U¢r « left singular vectors o€’
E+ K-UsULK
forje[l...n]do

if 7 € Rthen

P;j <0

else P « || 53
P «+ ﬁ
return P

O© O ~NO UL WN

Figure 3: The adaptive sampling technique (Deshpande et al., 200&)ptbetes on the
entire matrixK to compute the probability distribution over columns at each
adaptive step.

4.1 Adaptive Nystrom sampling

Instead of sampling allcolumns from a fixed distribution, adaptive sampling alternates be-
tween selecting a set of columns and updating the distribution over all the cal8tarting
with an initial distribution over the columns,< [ columns are chosen to form a submatrix
C’. The probabilities are then updated as a function of previously chodemies ands

10
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UPDATE-PROBABILITY-PARTIAL (R)
1 C’ + columns ofK corresponding to indices iR
k' < CHOOSERANK() 1> low-rank () or ‘R|
S, U < DO-NYSTROM (C/, k) > see eq (3)
nys

Chys < Spectral reconstruction usirdg,/*, U/

nys
E«+ C' -Cj,,
forje[l...n]do
if j € Rthen
P; < 0 > sample without replacement

elie P; || E I3

O© o ~NOOTLh WN

[EEN
o

P mn
return P

[EEN
[EEN

Figure 4: The proposed adaptive sampling technique that uses a snsai stithe original
matrix K to adaptively choose columns. It does not need to store or operate on

K.

1/n% || Dataset|| Uniform ICL SMGA | Adapt-Part K-means| Adapt-Full

PIE-2.7K]||39.7 (0.7) |41.6 (0.0) | 54.4 (0.6) | 42.6 (0.8) |61.3 (0.5)| 44.2 (0.9)
PIE-7K ||58.6 (1.0)|50.1 (0.0) | 68.1 (0.9) | 61.4 (1.1) |71.0 (0.7) -

5% MNIST |[47.5(0.9)|41.5 (0.0) | 59.2 (0.5) | 49.7 (0.9) | 72.9 (0.9) | 50.3 (0.7)
ESS ||45.7(2.6)(25.2 (0.0)|61.9 (0.5) | 49.3 (1.5) | 64.2 (1.6) -

ABN 47.4 (5.5)15.6 (0.0) | 64.9 (1.8) | 23.0 (2.8) | 65.7 (5.8) | 50.7 (2.4)

PIE-2.7K|[58.2 (1.0) [61.1 (0.0) [ 72.7 (0.2) [ 60.8 (1.0) [ 73.0 (1.1)] 63.0 (0.3)
PIE-7K ||72.4 (0.7)|60.8 (0.0) | 74.5 (0.6) | 77.0 (0.6) | 82.8 (0.7) -

10% || MNIST |/66.8 (1.4)|58.3 (0.0)| 72.2 (0.8) | 69.3 (0.6) | 81.6 (0.6) | 68.5 (0.5)
ESS ||66.8 (2.0)]39.1(0.0)|74.7 (0.5) | 70.0 (1.0) | 81.6 (1.0) -

ABN 61.0 (1.1)|25.8 (0.0) | 67.1 (0.9) | 33.6 (6.7) | 79.8 (0.9)| 57.9 (3.9)

PIE-2.7K][75.2 (1.0) [ 80.5 (0.0) [86.1 (0.2)] 78.7 (0.5) [ 85.5 (0.5) | 80.6 (0.4)
PIE-7K [|85.6 (0.9)|69.5 (0.0)| 79.4 (0.5) | 86.2 (0.3) |91.9 (0.3) -

20% || MNIST |[83.6 (0.4)|77.9 (0.0) | 78.7 (0.2) | 84.0 (0.6) |88.4 (0.5)| 80.4 (0.5)
ESS |([81.4(2.1)]55.3 (0.0) | 79.4 (0.7) | 83.4 (0.3) [90.0 (0.6) -

ABN |/80.8 (1.7)[41.2 (0.0)| 67.2 (2.2) | 44.4 (6.7) | 85.1 (1.6) | 62.4 (3.6)

Table 2: Nystém spectral reconstruction accuracy for various sampling methoddlfor a
datasets fok = 100 and thred /n percentages. Numbers in parenthesis indicate
the standard deviations faf different runs for eacth. Numbers in bold indicate
the best performance on each dataset, i.e., each row of the table. {a3hes
indicate experiments that were too costly to run on the larger datasets (ESS, P
7K).

new columns are sampled and incorporate@inThis process is repeated urititolumns
have been selected. The adaptive sampling scheme in Deshpande @0@).i¢2detailed
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1/n%/|| Dataset||Uniform| ICL | SMGA | Adapt-Part K-meansAdapt-Full
PIE-2.7K|| 0.03 0.56 2.30 0.43 2.44 22.54
PIE-7K 0.63 | 44.04 | 59.02 6.56 15.18 -
5% || MNIST 0.04 1.71 7.57 0.71 1.26 20.56
ESS 0.07 2.87 | 62.42 0.85 3.48 -
ABN 0.06 3.28 9.26 0.66 2.44 28.49
PIE-2.7K|| 0.08 2.81 8.44 0.97 3.25 23.13
PIE-7K 0.63 44.04 | 244.33 6.56 15.18 -
10% || MNIST 0.20 7.38 | 28.79 1.51 1.82 21.77
ESS 0.29 11.01 | 152.30 2.04 7.16 -
ABN 0.23 10.92 | 33.30 1.74 4.94 35.91
PIE-2.7K|| 0.28 8.36 | 38.19 2.63 5.91 27.72
PIE-7K 0.81 [141.13|1107.32 13.80 12.08 -
20% || MNIST 0.46 | 16.99 | 51.96 4.03 2.91 26.53
ESS 0.52 34.28 | 458.23 5.90 14.68 -
ABN 1.01 38.36 | 199.43 8.54 12.56 97.39

Table 3: Run times (in seconds) corresponding to Niystspectral reconstruction results
in Table 4. Dashes (*-') indicate experiments that were too costly to runen th
larger datasets (ESS, PIE-7K).

in Figure 3. Note that the sampling step, UPDATE-PROBABILITY-FULLguéees a full
pass oveK at each step, and hences@3) time and space.

We propose a simple sampling technigagldptive-partia) that incorporates the ad-
vantages of adaptive sampling while avoiding the computational and stanedgenis of the
adaptive-fulltechnique. At each iterative step, we measure the reconstruction@readh
row of C" and the distribution over correspondioglumnsof K is updated proportional to
this error. We compute the error f@', which is much smaller thaK, thus avoiding the
O(n?) computation. As described in (4),f is fixed to be the number of columns @,
it will lead to C7, ; = C' resulting in perfect reconstruction 6f. So, one must choose a
smallerk’ to generate non-zero reconstruction errors from which probabilitieseaup-
dated (we used’ = (# columnsinC’)/2 in our experiments). One artifact of using:a
smaller than the rank &’ is that all the columns dK will have a non-zero probability of
being selected, which could lead to the selection of previously selected colartire next
iteration. However, samplingithoutreplacement strategy alleviates this problem. Work-
ing with C’ instead ofK to iteratively compute errors makes this algorithm significantly
more efficient than that of Deshpande et al. (2006), as each iteratiem @kl &’ + [°) time
and requires at most the storagel @oblumns of K. The details of the proposed sampling
technique are outlined in Figure 4.

4.2 Experiments

We used the datasets in Table 1, and compared the effect of differaptisg techniques
on the relative accuracy of Ny$&im spectral reconstruction far= 100. All experiments
were conducted in Matlab on aB— 64 architecture using a singke4 Ghz core and0GB

of main memory. We used an implementation of ICL from Cawley and Talbot (2&0d
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an implementation of SMGA code from Smola (2000), using default paranegesst by
these implementations. We wrote our own implementation ofifh@eans method using
5 iterations of K-means and employing an efficient (vectorized) function to compygte
distances between points and centroids at each iteration (Bunscho®)2 18loreover,
we used a random projection SVD solver to compute truncated SVD, usiteghyoTygert
(2009).

The relative accuracy results across datasets for varying valuearefpresented in
Table 4, while the corresponding timing results are detailed in Table 4. KHmeeans
algorithm was clearly the best performing adaptive algorithm, generatinmés¢ accu-
rate approximations in almost all settings in roughly the same amount of time (pakess
other adaptive algorithms. Moreover, the proposed Nystadaptive technique, which is a
natural extension of an important algorithm introduced in the theory comminaisyper-
formance similar to this original algorithm at a fraction of the cost, but it is tiwiess
outperformed by thd({-means algorithm. We further note that ICL performs the worst of
all the adaptive techniques, and it is often worse than random samplinglftesvation is
also noted by Zhang et al. (2008)).

The empirical results also suggest that the performance gain due tovadsaotipling
is inversely proportional to the percentage of sampled columns — randopiisg actually
outperforms many of the adaptive approaches when sampiivigof the columns. These
empirical results suggest a trade-off between time and space requireragmsted by
Schilkopf and Smola (2002)[Chapter 10.2]. Adaptive techniques spend timoe to find
a concise subset of informative columns, but as in the case df theeans algorithm, can
provide improved approximation accuracy.

5. Ensemble Sampling

In this section, we slightly shift focus, and discuss a meta algorithm calledrtbemble
Nystidm algorithm We treat each approximation generated by the Nystmethod for a
sample ofl columns as amexpertand combiney > 1 such experts to derive an improved
hypothesis, typically more accurate than any of the original experts.

The learning set-up is defined as follows. We assume a fixed kernaldnric : X' x
X — R that can be used to generate the entries of a kernel ntdtrikhe learner receives a
setS of Ip columns randomly selected from matik uniformly without replacementS is
decomposed intp subsetsS;,. . ., S,. Each subse$,, €1, p|, containg columns and is
used to define a rank-Nystrom approximegiorf(r 4 Dropping the rank subscriptin favor
of the sample index, K,. can be written a¥, = CTWjCI , whereC, andW,. denote the
matrices formed from the columns 8f andW;! is the pseudo-inverse of the rakkap-
proximation ofW,.. The learner further receives a samplef s columns used to determine
the weightu, € R attributed to each expeK,. Thus, the general form of the approxima-
tion, K°**, generated by the ensemble Ngsir algorithm, withk < rank(K*) < pk,

3. Note that Matlab’s built-inf<-means function is quite inefficient.

4. In this study, we focus on the class of base learners generated\fystdm approximation with uniform
sampling of columns or from the adaptivé-means method. Alternatively, these base learners could be
generated using other (or a combination of) sampling schemes diddnsSections 3 and 4.
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Re =3k,
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As noted by Li et al. (2010), (6) provides an alternative descriptiothefensemble
Nystrom method as a block diagonal approximatiorVet’, ., whereW.,,; is thelp x Ip
SPSD matrix associated with tlie sampled columns. Moreover, Li et al. (2010) further
argues that computin§v/, . would be preferable to making this block diagonal approxi-
mation and subsequently uses a random projection SVD solver to speedhpptation of
W/ . (Halko et al., 2009). However, this analysis is misleading as these two ortabg
approaches should not be viewed as competing methods. Rather, oakvaga use the
ensemble based approaalong withfast SVD solvers. This approach is most natural to
improve performance on large-scale problems, and is precisely theambpne adopt in
our experiments.

The mixture weightg:,- can be defined in many ways. The most straightforward choice
consists of assigning equal weight to each expert=1/p, r € [1,p]. This choice does
not require the additional samplé, but it ignores the relative quality of each Ny&in
approximation. Nevertheless, this simpieiform methocalready generates a solution su-
perior to any one of the approximatiokS. used in the combination, as we shall see in the
experimental section.

Another method, thexponential weight methodonsists of measuring the reconstruc-
tion error ¢, of each experiK, over the validation sampl& and defining the mixture
weight asu, = exp(—né,)/Z, wheren > 0 is a parameter of the algorithm adtia nor-
malization factor ensuring that the vecioe= (u1, . . ., 11,) belongs to the unit simple&
of RP: A={pu € RP: pp > 0A > P_, u. = 1}. The choice of the mixture weights here is
similar to those used in the Weighted Majority algorithm (Littlestone and Warmuth,)1994
Let Ky denote the matrix formed by using the samples fiidras its columns and la Y
denote the submatrix dK, containing the columns corresponding to the column¥’in
The reconstruction errgy. = | K" — Ky/|| can be directly computed from these matrices.

A more general class of methods consists of using the samptetrain the mixture
weightsy,. to optimize a regression objective function such as the following:

p
min Muls + 1 mKY - K|z,

r=1

where) > 0. This can be viewed as a ridge regression objective function and adriotsea ¢
form solution. We will refer to this method as thielge regression method\ote that to
ensure that the resulting matrix is SPSD for use in subsequent kerresl-hlgerithms, the
optimization problem must be augmented with standard non-negativity constraims is
not necessary however for reducing the reconstruction error, @sriexperiments. Also,
clearly, a variety of other regression algorithms such as Lasso careénaee instead.
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The total complexity of the ensemble Nyatn algorithm isO (pl® +plkn+C,,), where
C is the cost of computing the mixture weights,used to combine theNystrom approx-
imations. The mixture weights can be computed in constant time for the uniform dhetho
in O(psn) for the exponential weight method, or @(p* + p?ns) for the ridge regres-
sion method wher®(p*ns) time is required to compute @ x p matrix andO(p?) time
is required for inverting this matrix. Furthermore, although the ensemble dtgstftgo-
rithm requiresp times more space and CPU cycles than the standard dvystnethod,
these additional requirements are quite reasonable in practice. Therspgagement is
still manageable for even large-scale applications given jhattypically O(l) and! is
usually a very small percentageof(see Section 5.2 for further details). In terms of CPU
requirements, we note that the algorithm can be easily parallelized, asxglerts can be
computed simultaneously. Thus, with a clustep @hachines, the running time complexity
of this algorithm is nearly equal to that of the standard Nystalgorithm withl samples.

5.1 Ensemble Woodbury approximation

The Woodbury approximation is a useful tool to use alongside low-rapkoapnations to
efficiently (and approximately) invert kernel matrices. We are able to applyVoodbury
approximation since the Ny&tm method represents as the product of low-rank matrices.
This is clear from the definition of the Woodbury approximation:

(A+BCD) '=A'—A'B(C"'+DA'B) 'DA, (7)

whereA = M andK = BCD in the context of the Nystim method. In contrast, the
ensemble Nystim method represents as the sum of products of low-rank matrices, where
each of thep terms corresponds to a base learner. Hence, we cannot directly apply th
Woodbury approximation as presented above. There is however, ralnattension of the
Woodbury approximation in this setting, which at the simplest level involvesingnthe
approximatiorp times. Starting withp base learners with their associated weights, Kg.,
andy, forr €[1, p], and definindl'y = AL, we perform the following series of calculations:

T, = (To + mK;p) ™!
Ty = (T1 + 12Ko) ™!

T;1 = (Tp1 + Mpr)_l :

To computeTl‘l, notice that we can use Woodbury approximation as stated in (7) since
we can expres;alfil as the product of low-rank matrices and we know tﬁ@ﬂ = %I.

More generally, forl < i < p, given an expression (ﬁ”i__ll as a product of low-rank
matrices, we can efficiently comptﬂe‘1 using the Woodbury approximation (we use the
low-rank structure to avoid ever computing or storing a futk n matrix). Hence, after
performing this series qf calculations, we are left with the inverse'®f, which is exactly

the quantity of interest sinc®, = A\I + > 2_, Wf{,. Although this algorithm requires

p iterations of the Woodbury approximation, these iterations can be parall@izettee-

like fashion. Hence, when working on a cluster, using an ensembledyystpproximation
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along with the Woodbury approximation requires onlyg, (p) factor more time than using
the standard Nystm methoc®

5.2 Experiments

In this section, we present experimental results that illustrate the perfoenwdrthe en-
semble Nysidim method. We again work with the datasets listed in Table 1, and compare
the performance of various methods for calculating the mixture weighjs Throughout

our experiments, we measure performance via relative accuracyddefirn(5)). For all
experiments, we fixed the reduced rankte 100, and set the number of sampled columns
tol=3% x n.b

ENSEMBLE NYSTROM WITH VARIOUS MIXTURE WEIGHTS

We first show results for the ensemble Ngstrmethod using different techniques to choose
the mixture weights, as previously discussed. In these experiments, w&etbon base
learners generated via the Ny@ir method with uniform sampling of columns. Further-
more, for the exponential and the ridge regression variants, we samgletdofs = 20
columns and used an additior2dl columns §’) as a hold-out set for selecting the optimal
values ofyp and\. The number of approximationg, was varied fron2 to 25. As a baseline,
we also measured the maximum relative accuracy acrosg Mystrom approximations
used to construdk“"™®. We also calculated the performance when using the opgimtat

is, we used least-square regression to find the best possible chomelbiihation weights
for a fixed set ofp approximations by setting=n. The results of these experiments are
presented in Figure 5These results clearly show that the ensemble Nysterformance

is significantly better than any of the individual Ny&tn approximations. We further note
that the ensemble Ny&im method tends to converge very quickly, and the most significant
gain in performance occurs asncreases fron2 to 10.

EFFECT OF RANK

As mentioned earlier, the rank of the ensemble approximations cattitmes greater than
the rank of each of the base learners. Hence, to validate the resultsia 5jgue performed

a simple experiment in which we compared the performance of the best baserlto the
best rank: approximation of the uniform ensemble approximation (obtained via SVD of the
uniform ensemble approximation). We again used base learners genaeatiee Nystoém
method with uniform sampling of columns. The results of this experiment, pexbém
Figure 6, suggest that the performance gain of the ensemble methods igentit this
increased rank.

5. Note that we can also efficiently obtain singular values and singularrgeatthe low-rank matri@<“"®
using coherence-based arguments, as in Talwalkar and Rostam{28d®).

6. Similar results (not reported here) were observed for other vafueand! as well.

7. Similar results (not reported here) were observed when measalatiye accuracy using the spectral norm
instead of the Frobenium norm.
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Figure 5: Relative accuracy for ensemble Ngstrmethod using uniform (‘uni’), exponen-
tial (‘exp’), ridge (‘ridge’) and optimal (‘optimal’) mixture weights as welt the
best (‘best b.l") of they base learners used to create the ensemble approxima-

tions.
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Effect of Rank — PIE-2.7K
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Figure 6: Relative accuracy for ensemble Ngatrmethod using uniform (‘uni’) mixture
weights, the optimal rank-approximation of the uniform ensemble result (‘uni
rank+’) as well as the best (‘best b.l.") of thebase learners used to create the
ensemble approximations.
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Effect of Ridge — PIE-2.7K Effect of Ridge — PIE-7K
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Figure 7: Comparison of relative accuracy for the ensemble Biystnethod withp =10
experts with weights derived from linear (‘no-ridge”) and ridge (‘edgegres-
sion. The dotted line indicates the optimal combination. The relative size of the
validation set equals/n x 100.
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Base Learnef Method PIE-2.7K| PIE-7K| MNIST | ESS| ABN
Average Base Learne| 26.9 46.3 34.2 | 30.0| 38.1

Best Base Learner 29.2 48.3 36.1 |34.5|43.6

Uniform Ensemble Uniform 33.0 57.5 47.3 |43.9|49.8
Ensemble Exponentigl 33.0 57.5 47.4 |43.9|49.8

Ensemble Ridge 35.0 58.5 54.0 | 44.5| 53.6

Average Base Learney 47.6 62.9 62.5 |42.2 ] 60.6

Best Base Learner 48.4 66.4 63.9 |47.1]72.0

K-means || Ensemble Uniform 54.9 71.3 76.9 |52.2|76.4
Ensemble Exponentigl 54.9 71.4 77.0 522|783

Ensemble Ridge 54.9 71.6 | 77.2 |52.7|79.0

Table 4: Relative accuracy for ensemble Ngstrmethod with Nystim base learners gen-
erated with uniform sampling of columns or via themeans algorithm.

EFFECT OF RIDGE

Figure 5 also shows that the ridge regression technique is the best afojhespd tech-
nigues, and generates nearly the optimal solution in terms of relative agausang the
Frobenius norm. We also observed that whéhincreased to approximatedys to 10% of

n, linear regression without any regularization performs about as weitigs regression
for both the Frobenius and spectral norm. Figure 7 shows this compdrétareen lin-
ear regression and ridge regression for varying valuesusing a fixed number of experts
(p = 10). In these experiments, we again used base learners generated vigstri@N
method with uniform sampling of columns.

ENSEMBLE K-MEANS NYSTROM

In the previous experiments, we focused on base learners geneeatied Mystbm method
with uniform sampling of columns. In light of the performance of fiemeans algorithm
in Section 4, we next explored the performance of this algorithm wheninsemhjunction
with the ensemble Nystm method. We fixed the number of base learnerg te 10
and when using ridge regression to learn weights, wesset s’ = 20. As shown in
Table 5.2, similar performance gains in comparison to the average or lsesiglaaner can
be seen when using an ensemble of base learners derived frofi-theans algorithm.
Consistent with the experimental results of Section 4, the accuracy vakibigher fork -
means relative to uniform sampling, though as noted in the previous secimmdieased
performance comes with an added cost, agth@eans step is more expensive than random
sampling.

6. Theoretical Analysis

We now present theoretical results that compare the quality of thedwystpproximation
to the ‘best’ low-rank approximation, i.e., the approximation constructed thentop sin-
gular values and singular vectorsl§f This work, related to work by Drineas and Mahoney
(2005), provides performance bounds for the Ngstimethod as it is often used in practice,
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i.e., using uniform sampling without replacement, and holds for both the sthNgatom
method as well as the ensemble Ngstrmethod discussed in Section 5.

Our theoretical analysis of the Ny8tn method uses some results previously shown
by Drineas and Mahoney (2005) as well as the following generalizatidviaiiiarmid’s
concentration bound to sampling without replacement (Cortes et al., 2008).

Theorem 1 Let 71, ..., Z; be a sequence of random variables sampled uniformly without
replacement from a fixed setisfu elementsZ, and let¢: Z! — R be a symmetric function
such that for alli € [1,1] and for all z1,...,z, € Z andz{,...,2] € Z, |p(z1,...,21) —
&(z1, ..., Zi1, 2, Zit1, - - -, 21)| < c. Then, for alle > 0, the following inequality holds:

Pr ¢ — Elg] > ] < exp [57252], (8)

lu

wherea(l, u) = I+u—1/2 1— 1/(2n11a><{l u})’

We define theselection matrixcorresponding to a sample bfolumns as the matri® €
R"*! defined byS;; =1 if the ith column ofK is among those samplef;; =0 otherwise.
Thus,C=KS is the matrix formed by the columns sampled. Sikces SPSD, there exists
X € RV*" such thafk = X T X. We shall denote b¥ ..., the maximum diagonal entry
of K, Knax =max; K;;, and bydk,, the distancenax;; \/K;; + K;; — 2Kj;.

max

6.1 Standard Nystiom method

The following theorem gives an upper bound on the norm-2 error of §retrdin approxi-
mation of the form|K — K||2/||K |2 < [|[K—K||2/|K]|l2+O(1/v1) and an upper bound
on the Frobenius error of the Nystn approximation of the formiK — K| ¢/ K||r <

1K — Kil[r/|[K]r +O1/17).

Theorem 2 Let K denote the ranks Nystiom approximation oK based on/ columns
sampled uniformly at random without replacement frimand K, the best rank: ap-
proximation ofK. Then, with probability at least — ¢, the following inequalities hold for
any sample of size

1K~ Ko < K~ Kills + 2K [1+ /5250 ey 108 § a8 /K]
IK —K|r < |K —Kgllr+

64k 1 K
(ST nK e 1+ /5255 5 )1og6dmaX/Kmax] ,

SIS

wheref(l,n) = 1—Wlln_l}-

Proof To bound the norm-2 error of the Ny8tn method in the scenario of sampling
without replacement, we start with the following general inequality given bgdas and
Mahoney (2005)[proof of Lemma 4]:

IK — K[> < |[K — K|l + 2|XX" — ZZ" |5,

whereZ = ﬁXS. We then apply the McDiarmid-type inequality of Theorem %{8) =
XX T ~ZZT|,. LetS’ be a sampling matrix selecting the same columnS azcept for
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one, and le#’ denote, /7 XS'. Letz andz’ denote the only differing columns @& and
Z’, then

6(S') = &(S)| < ||2'2"" — 2z’ |2 = ||(z' —2)2'" +2(z —2) |
< 2||z’ — 2|2 max{]|z|2, [|2']|2}.
Columns ofZ are those oKX scaled by,/n/l. The norm of the difference of two columns

of X can be viewed as the norm of the difference of two feature vectorgiatsd toK
and thus can be bounded by . Similarly, the norm of a single column & is bounded

1
by K3 .x. This leads to the following inequality:

B(8') — B(S)] < T Kb (9)

The expectation op can be bounded as follows:
n

< 7Kmax7 10
<7 (10)
where the last inequality follows Corollary 2 of Kumar et al. (2009a). Tlegjiralities
(9) and (10) combined with Theorem 1 give a bound||0tX " — ZZ "> and yield the
statement of the theorem.

The following general inequality holds for the Frobenius error of thetidys method
(Drineas and Mahoney, 2005):

K — K7 < 1K - Kil|F + V64k | XX — ZZ7 |7 nKJ™. (11)

E[®] = BI|XX" — 227 ||;] < E[|XX" - Z27| ;]

Bounding the ternj| XX " —ZZ" || as in the norm-2 case and using the concentration
bound of Theorem 1 yields the result of the theorem. |

6.2 Ensemble Nystom method

The following error bounds hold for ensemble Nysir methods based on a convex combi-
nation of Nystbm approximations.

Theorem 3 Let .S be a sample ofl columns drawn uniformly at random without replace-
ment fromK, decomposed intp subsamples of sizZe Sy, ...,S,. Forr € [1,p], let K,
denote the rank: Nysttom approximation oK based on the samplg., and letK; denote
the best ranks approximation ofK. Then, with probability at least — ¢, the following
inequalities hold for any sampl§ of sizepl and for anyu in the unit simplexA and
Kers =37 K,

I — K2 < [1K —Kill2 +
%}Kmax [1 + fmaxD? \/nn 1}72 B(pl,n) log 5 max/KmaX}
K — K[| p < [|K - Kg|lr+

1 1 ! %
(4] K [1F i /58 gy 108 § Kma)‘} ’

whereS(pl,n) = 1— and pimax = maxh_; fir.

1
2max{pl,n—pl}
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Proof Forr € [1,p], letZ, = /n/lXS,, whereS, denotes the selection matrix cor-

responding to the sampl&.. By definition of K**¢ and the upper bound dfK — K[|
already used in the proof of theorem 2, the following holds:

p p
1K = R = || D2 (K =Ky <D oK~ Koz
r=1 r=1

p
<> (1K = Kill2 + 2 XX = 2,2/ ||2)
r=1

p
= 1K — Kyl +2) | XX = Z,Z] 2.

r=1

We apply Theorem 1 ta(S) =>2_, x| XX T — Z,Z ||2. Let S’ be a sample differing
from S by only one column. Observe that changing one column of the full sasiple
changes only one subsamge and thus only one term,. | XX" — Z,Z ||o. Thus, in
view of the bound (9) on the change[flXX " — Z,Z||2, the following holds:

2n 1
’¢(S,> - ¢(S)’ S TﬂmaxdﬁaxKEnax; (12)
The expectation ob can be straightforwardly bounded by:

n

7Kmax
Vi

using the bound (10) for a single expert. Plugging in this upper boundhentipschitz
bound (12) in Theorem 1 yields the norm-2 bound for the ensemble dystrethod.

For the Frobenius error bound, using the convexity of the Frobenius square|- %
and the general inequality (11), we can write

p p
n
B@(S)) = 3 ur BIIXXT = ZZ7 o] < 3 pir Ko =
r=1 r=1

p
I =K = | > (K - K,)
r=1

2 P .
I < Z:U’THK - KTH%“
r=1

i

p
<> [||K K2+ V6aE XX T — Z,Z] || p nKRex]

r=1

p
= 1K — Kyl[F + V64k Y pur | XX = Z,Z] || n KR

r=1

The result follows by the application of Theorem L46S) =>""_, 4, | XX" — Z,Z] ||
in a way similar to the norm-2 case. |

The bounds of Theorem 3 are similar in form to those of Theorem 2. Henvéve
bounds for the ensemble Ny8in are tighter than those for any Ny@&tn expert based on
a single sample of sizeeven for a uniform weighting. In particular, for;, = 1/p for
all 4, the last term of the ensemble bound for norm-2 is smaller by a factor larger th

1
HmaxP? = 1/\/}3
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7. Conclusion

A key aspect of sampling-based matrix approximations is the method for theiaelet
representative columns. We discussed both fixed and adaptive methasisripling the
columns of a matrix. We saw that the approximation performance is significdfebted
by the choice of the sampling algorithm and also that there is a tradeoff betheesing
a more informative set of columns and the efficiency of the sampling algorithurihédt-
more, we introduced and discussed a new meta-algorithm based on arbneéseveral
matrix approximations that generates favorable matrix reconstructions hesseglearners
derived from either fixed or adaptive sampling schemes, and naturallwithg a dis-
tributed computing environment, thus making it quite efficient even in large-se&ings.
We concluded with a theoretical analysis of the Ngstrmethod (both the standard ap-
proach and the ensemble method) as it is often used in practice, namely n#iognu
sampling without replacement.
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