List of Publications
Machine Learning and Computer Vision
- Nikunj Saunshi, Stefani Karp, Shankar Krishnan, Sobhan Miryoosef, Sashank J. Reddi, Sanjiv Kumar
On the Inductive Bias of Stacking Towards Improving Reasoning
Neural Information Processing Systems (NeurIPS), 2024.
[pdf]
- Taehyeon Kim, Ananda Theertha Suresh, Kishore Papineni, Michael Riley, Sanjiv Kumar, Adrian Benton
Accelerating Blockwise Parallel Language Models with Draft Refinement
Neural Information Processing Systems (NeurIPS), 2024.
[pdf]
- Khashayar Gatmiry, Nikunj Saunshi, Sashank Reddi, Stefanie Jegelka, Sanjiv Kumar
Can Looped Transformers Learn to Implement Multi-step Gradient Descent for In-context Learning?
International Conference on Machine Learning (ICML), 2024.
[pdf]
- Yuchen Li, Alexandre Kirchmeyer, Aashay Mehta, Yilong Qin, Boris Dadachev, Kishore Papineni, Sanjiv Kumar, Andrej Risteski
Promises and Pitfalls of Generative Masked Language Modeling: Theoretical Framework and Practical Guidelines
International Conference on Machine Learning (ICML), 2024.
[pdf]
- Seungyeon Kim, Ankit Singh Rawat, Manzil Zaheer, Wittawat Jitkrittum, Veeranjaneyulu Sadhanala, Sadeep Jayasumana, Aditya Krishna Menon, Rob Fergus, Sanjiv Kumar
USTAD: Unified Single-model Training Achieving Diverse Scores for Information Retrieval
International Conference on Machine Learning (ICML), 2024.
[pdf]
- Aishwarya P S, Pranav Ajit Nair, Yashas Samaga, Toby Boyd, Sanjiv Kumar, Prateek Jain, Praneeth Netrapalli
Tandem Transformers for Inference Efficient LLMs
International Conference on Machine Learning (ICML), 2024.
[pdf]
- Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, Vaishnavh Nagarajan
Think Before You Speak: Training Language Models with Pause Tokens
International Conference on Learning Representations (ICLR), 2024.
[pdf]
- Harikrishna Narasimhan, Aditya Krishna Menon, Wittawat Jitkrittum, Sanjiv Kumar
Plugin Estimators for Selective Classification with Out-Of-Distribution Detection
International Conference on Learning Representations (ICLR), 2024.
[pdf]
- Neha Gupta, Harikrishna Narasimhan, Wittawat Jitkrittum, Ankit Singh Rawat,
Aditya Krishna Menon, Sanjiv Kumar
Language Model Cascades: Token-Level Uncertainty and Beyond
International Conference on Learning Representations (ICLR), 2024.
[pdf]
- Yihan Wang, Si Si, Daliang Li, Michal Lukasik, Felix Yu, Cho-Jui Hsieh, Inderjit S Dhillon, Sanjiv Kumar
Two-Stage LLM Fine-Tuning with Less Specialization and More Generalization
International Conference on Learning Representations (ICLR), 2024.
[pdf]
- Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat, Aditya Krishna Menon, Afshin Rostamizadeh, Sanjiv Kumar, Jean-François Kagy, Rishabh Agarwal
DistillSpec: Improving Speculative Decoding
Via Knowledge Distillation
International Conference on Learning Representations (ICLR), 2024.
[pdf]
- Shanda Li, Chong You, Guru Guruganesh, Joshua Ainslie, Santiago Ontanon, Manzil Zaheer, Sumit Sanghai, Yiming Yang, Sanjiv Kumar, Srinadh Bhojanapalli
Functional Interpolation for Relative Positions Improves Long Context Transformers
International Conference on Learning Representations (ICLR), 2024.
[pdf]
- Lin Chen, Michal Lukasik, Wittawat Jitkrittum, Chong You, Sanjiv Kumar
On Bias-Variance Alignment in Deep Models
International Conference on Learning Representations (ICLR), 2024.
[pdf]
- Harikrishna Narasimhan, Aditya Krishna Menon, Wittawat Jitkrittum
Neha Gupta, Sanjiv Kumar
Learning to Reject Meets Long-Tail Learning
International Conference on Learning Representations (ICLR), 2024.
[pdf]
- V. Nagarajan, A. K. Menon, S. Bhojanapalli, H. Mobahi, and S. Kumar
On Student-Teacher Deviations in Distillation: Does It Pay to Disobey?
Neural Information Processing Systems (NeurIPS), 2023.
[pdf]
- Z. Yang, M. Lukasik, V. Nagarajan, Z. Li, A. S. Rawat, M. Zaheer, A. K. Menon, and S. Kumar
ResMem: Learn What You Can and Memorize the Rest
Neural Information Processing Systems (NeurIPS), 2023.
[pdf]
- P. Sun, D. Simcha, D. Dopson, R. Guo, and S. Kumar
SOAR: Improved Indexing for Approximate Nearest Neighbor Search
Neural Information Processing Systems (NeurIPS), 2023.
[pdf]
- W. Jitkrittum, N. Gupta, A. K. Menon, H. Narasimhan A. S. Rawat, and S. Kumar
When Does Confidence-Based Cascade Deferral Suffice?
Neural Information Processing Systems (NeurIPS), 2023.
[pdf]
- S. J. Reddi, S. Miryoosefi, S. Karp, S. Krishnan, S. Kale, S. Kim, and S. Kumar
Efficient Training of Language Models using Few-Shot Learning
International Conference on Machine Learning (ICML), 2023.
[pdf]
- G. Citovsky, G. DeSalvo, S. Kumar, S. Ramalingam, A. Rostamizadeh, and Y. Wang
Leveraging Importance Weights in Subset Selection
International Conference on Learning Representations (ICLR), 2023.
[pdf]
- Z. Li, C. You, S. Bhojanapalli, D. Li, A. S. Rawat, S. J. Reddi, K. Ye, F. Chern, F. Yu, R. Guo, and S. Kumar
The Lazy Neuron Phenomenon: On Emergence of Activation Sparsity in Transformers
International Conference on Learning Representations (ICLR), 2023.
[pdf]
- M. Zaheer, A. S. Rawat, S. Kim, C. You, H. Jain, A. Veit, R. Fergus, and S. Kumar
Teacher Guided Training: An Efficient Framework for Knowledge Transfer
International Conference on Learning Representations (ICLR), 2023.
[pdf]
- H. Harutyunyan, A. S. Rawat, A. K. Menon, S. Kim, and S. Kumar
Supervision Complexity and its Role in Knowledge Distillation
International Conference on Learning Representations (ICLR), 2023.
[pdf]
- P. Sun, R. Guo, and S. Kumar
Automating Nearest Neighbor Search Configuration with Constrained Optimization
International Conference on Learning Representations (ICLR), 2023.
[pdf]
- S. Si, F. Yu, A. S. Rawat, C.-J. Hsieh, and S. Kumar
Serving Graph Compression for Graph Neural Networks
International Conference on Learning Representations (ICLR), 2023.
[pdf]
- Z. Li, R. Guo, and S. Kumar
Decoupled Context Processing for Context Augmented Language Modeling
Neural Information Processing Systems (NeurIPS), 2022.
[pdf]
- H. Narasimhan, W. Jitkrittum, A. K. Menon, A. S. Rawat, and S. Kumar
Post-hoc Estimators for Learning to Defer to an Expert
Neural Information Processing Systems (NeurIPS), 2022.
[pdf]
- F. Chern, B. Hechtman, A. Davis, R. Guo, D. Majnemer, and S. Kumar
TPU-KNN: K Nearest Neighbor Search at Peak FLOP/s
Neural Information Processing Systems (NeurIPS), 2022.
[pdf]
- A. K. Menon, S. Jayasumana, A. S. Rawat, S. Kim, S. J. Reddi, and S. Kumar
In Defense of Dual-Encoders for Neural Ranking
International Conference on Machine Learning (ICML), 2022.
[pdf]
- Z. Li, S. Bhojanapalli, M. Zaheer, S. J. Reddi and S. Kumar
Robust Training of Neural Networks Using Scale Invariant Architectures
International Conference on Machine Learning (ICML), 2022.
[pdf]
- E. M. Lindgren, S. J, Reddi, R. Guo and S. Kumar
Efficient Training of Retrieval Models Using Negative Cache
Neural Information Processing Systems (NeurIPS), 2021.
[pdf]
- G. Citovsky, G. DeSalvo, C. Gentile, L. Karydas,
A. Rajagopalan, A. Rostamizadeh and S. Kumar
Batch Active Learning at Scale
Neural Information Processing Systems (NeurIPS), 2021.
[pdf]
- A. K. Menon, A. S. Rawat, S. J. Reddi, S. Kim, and S. Kumar
A Statistical Perspective on Distillation
International Conference on Machine Learning (ICML), 2021.
[pdf]
- A. S. Rawat, A. K. Menon, W. Jitkrittum, S. Jayasumana, F. X. Yu, S. J. Reddi, and S. Kumar
Disentangling Labeling and Sampling Bias for Learning in Large-output Spaces
International Conference on Machine Learning (ICML), 2021.
[pdf]
- S. J. Reddi, R. K. Pasumarthi, A. K. Menon, A. S. Rawat, F. Yu, S. Kim, A. Veit, and S. Kumar
RankDistil: Knowledge Distillation for Ranking
International Conference on Artificial Intelligence and Statistics (AISTATS) 2021.
[pdf]
- A. K. Menon, A. S. Rawat, and S. Kumar
Overparameterisation and Worst-case Generalisation: Friend or Foe?
International Conference on Learning Representations (ICLR), 2021.
[pdf]
- S. J. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konecný, S. Kumar, and H. B. McMahan
Adaptive Federated Optimization
International Conference on Learning Representations (ICLR), 2021.
[pdf]
- A. K. Menon, S. Jayasumana, A. S. Rawat, H. Jain
A. Veit and S. Kumar
Long-tail Learning via Logit Adjustment
International Conference on Learning Representations (ICLR), 2021.
[pdf]
- C.-Y. Hsieh, C.-K. Yeh, X. Liu, P. Ravikumar,
S. Kim, S. Kumar, and C.-J. Hsieh
Evaluations and Methods for Explanation Through Robustness Analysis
International Conference on Learning Representations (ICLR), 2021.
[pdf]
- J. Zhang, A. K. Menon, A. Veit, S. Bhojanapalli, S. Kumar, and S. Sra
Coping With Label Shift via Distributionally Robust Optimisation
International Conference on Learning Representations (ICLR), 2021.
[pdf]
- C. Yun, Y.-W. Chang, S. Bhojanapalli, A. S. Rawat, S. Reddi, and S. Kumar
O(n) Connections are Expressive Enough:
Universal Approximability of Sparse Transformers
Neural Information Processing Systems (NeurIPS), 2020.
[pdf]
- J. Zhang, S. P. Karimireddy, A. Veit, S. Kim, S. Reddi, and S. Kumar
Why are Adaptive Methods Good
for Attention Models?
Neural Information Processing Systems (NeurIPS), 2020.
[pdf]
- M. Weber, M. Zaheer, A. S. Rawat, A. Menon, and S. Kumar
Robust Large-Margin Learning in Hyperbolic Space
Neural Information Processing Systems (NeurIPS), 2020.
[pdf]
- Y. Liu, A. T. Suresh, F. Yu, S. Kumar, and M. Riley
Learning Discrete Distributions: User vs Item-Level
Privacy
Neural Information Processing Systems (NeurIPS), 2020.
[pdf]
- H. Chen, S. Si, Y. Li, C. Chelba,
S. Kumar, D. Boning, and C.-J. Hsieh
Multi-Stage Influence Function
Neural Information Processing Systems (NeurIPS), 2020.
[pdf]
- S. Bhojanapalli, C. Yun, A. S. Rawat, S. Reddi, and S. Kumar
Low-Rank Bottleneck in Multi-head Attention Models
International Conference on Machine Learning (ICML), 2020.
[pdf]
- M. Lukasik, S. Bhojanapalli, A. K. Menon, and S. Kumar
Does Label Smoothing Mitigate Label Noise?
International Conference on Machine Learning (ICML), 2020.
[pdf]
- R. Guo, P. Sun, E. Lindgren, Q. Geng, D. Simcha, F. Chern and S. Kumar
Accelerating Large-Scale Inference with Anisotropic Vector Quantization
International Conference on Machine Learning (ICML), 2020.
[pdf]
- F. X. Yu, A. S. Rawat, A. K. Menon, and S. Kumar
Federated Learning with Only Positive Labels
International Conference on Machine Learning (ICML), 2020.
[pdf]
- Y. You, J. Li, S. Reddi, J. Hseu, S. Kumar, S. Bhojanapalli, X. Song, J. Demmel, K. Keutzer, and C.-J. Hsieh
Large Batch Optimization for Deep Learning:
Training BERT in 76 Minutes
International Conference on Learning Representations (ICLR), 2020.
[pdf]
- C. Yun, S. Bhojanapalli, A. S. Rawat, S. J. Reddi, and S. Kumar
Are Transformers Universal Approximators
of Sequence-to-Sequence Functions?
International Conference on Learning Representations (ICLR), 2020.
[pdf]
- A. K. Menon, A. S. Rawat, S. J. Reddi, and S. Kumar
Can Gradient Clipping Mitigate Label Noise?
International Conference on Learning Representations (ICLR), 2020.
[pdf]
- W.-C. Chang, F. Yu, Y.-W. Chang, and S. Kumar
Pre-training Tasks for Embedding-based Large-scale Retrieval
International Conference on Learning Representations (ICLR), 2020.
[pdf]
- Y. Ruan, Y. Xiong, S. Reddi, S. Kumar,
C.-J. Hsieh
Learning to Learn by Zeroth-Order Oracle
International Conference on Learning Representations (ICLR), 2020.
[pdf]
- C.-J. Hsieh, Q. Cao, S. Kumar, S. Si, T. Xiao, and X. Liu
How Does Noise Help Robustness? Explanation and Exploration under the Neural SDE Framework
International Conference on Computer Vision and Pattern Recognition (CVPR), 2020.
[pdf]
- A. K. Menon, A. S. Rawat, S. J. Reddi, and S. Kumar
Multilabel reductions: what is my loss optimising?
Neural Information Processing Systems (NeurIPS), 2019.
[pdf]
- C. Guo, A. Mousavi, X. Wu, D. Holtmann-Rice, S. Kale, S. Reddi and S. Kumar
Breaking the Glass Ceiling for Embedding-Based Classifiers for Large Output Spaces
Neural Information Processing Systems (NeurIPS), 2019.
[pdf]
- A. S. Rawat, J. Chen, F. Yu, A. T. Suresh, and S. Kumar
Sampled Softmax with Random Fourier Features
Neural Information Processing Systems (NeurIPS), 2019.
[pdf]
- M. Staib, S. Reddi, S. Kale, S. Kumar, and S. Sra
Escaping Saddle Points with Adaptive Gradient Methods
International Conference on Machine Learning (ICML), 2019.
[pdf]
- S. Wu, A. G. Dimakis, S. Sanghavi, F. X. Yu, D. Holtmann-Rice, D. Storcheus, A. Rostamizadeh, and S. Kumar
Learning a Compressed Sensing Measurement Matrix via Gradient Unrolling
International Conference on Machine Learning (ICML), 2019.
[pdf]
- P.-H. (Patrick) Chen, S. Si, S. Kumar, Y. Li, and C.-J. Hsieh
Learning to Screen for Fast Softmax Inference on Large Vocabulary Neural Networks
International Conference on Learning Representations (ICLR), 2019.
[pdf]
- S. Reddi, S. Kale, F. X. Yu, D. Holtmann-Rice, J. chen and S. Kumar
Stochastic Negative Mining for Learning with Large Output Spaces
International Conference on Artificial Intelligence and Statistics (AISTATS), 2019.
[pdf]
- Q. Geng, W. Ding, R. Guo, and S. Kumar
Optimal Noise-Adding Mechanism in Additive Differential Privacy
International Conference on Artificial Intelligence and Statistics (AISTATS), 2019.
[pdf]
- S. J. Reddi, M. Zaheer, D. Sachan, S. Kale, and S. Kumar
Adaptive Methods for Nonconvex Optimization
Neural Information Processing Systems (NIPS), 2018.
[pdf]
- N. Agarwal, A. T. Suresh, F. X. Yu, S. Kumar, and H. B. McMahan
cpSGD: Communication-efficient and differentially-private distributed SGD
Neural Information Processing Systems (NIPS), 2018.
[pdf]
- Ian E. H. Yen, S. Kale, F. X. Yu, D. Holtmann-Rice, S. Kumar, P. Ravikumar
Loss Decomposition for Fast Learning in Large Output Spaces
International Conference on Machine Learning (ICML), 2018.
[pdf]
- S. Reddi, S. Kale, S. Kumar [best paper award]
On the Convergence of Adam and Beyond
International Conference on Learning Representations (ICLR), 2018.
[pdf]
- X. Wu, R. Guo, A. T. Suresh, S. Kumar, D. Holtmann-Rice, D. Simcha, F. X. Yu
Multiscale Quantization for Fast Similarity Search
Neural Information Processing Systems (NIPS), 2017.
[pdf]
- B. Dai, R. Guo, S. Kumar, N. He, L. Song
Stochastic Generative Hashing
International Conference on Machine Learning (ICML), 2017.
[pdf]
- A. T. Suresh, F. X. Yu, S. Kumar, H. B. McMahan
Distributed Mean Estimation with Limited Communication
International Conference on Machine Learning (ICML), 2017.
[pdf]
- X. Zhang, F. X. Yu, S. Kumar, S. F. Chang
Learning Spread-out Local Feature Descriptors
International Conference on Computer Vision (ICCV), 2017.
[pdf]
- K. Zhong, R. Guo, S. Kumar, B. Yan, D. Simcha, I. S. Dhillon
Fast Classification with Binary Prototypes
International Conference on Artificial Intelligence and Statistics (AISTATS), 2017.
[pdf]
- F. X. Yu, A. T. Suresh, K. Choromanski, D. Holtmann-Rice, S. Kumar
Orthogonal Random Features
Neural Information Processing Systems (NIPS), 2016.
[pdf]
- A. Choromanska, K. Choromanski, M. Bojarski, T. Jebara, S. Kumar, Y. LeCun
Binary Embeddings with Structured Hash Projections
International Conference on Machine Learning (ICML), 2016.
[pdf]
- R. Guo, S. Kumar, K. Choromanski, and D. Simcha
Quantization based Fast Inner Product Search
International Conference on Artificial Intelligence and Statistics (AISTATS), 2016.
[pdf]
- J. Pennington, F. X. Yu, S. Kumar
Spherical Random Features for Polynomial Kernels
Neural Information Processing Systems (NIPS), 2015.
[pdf]
- V. Sindhwani, T. Sainath, S. Kumar
Structured Transforms for Small-Footprint Deep Learning
Neural Information Processing Systems (NIPS), 2015.
[pdf]
- X. Zhang, F. X. Yu, Ruiqi Guo, S. Kumar, S. Wang, S.-F. Chang
Fast Orthogonal Projection Based on Kronecker Product
International Conference on Computer Vision (ICCV), 2015.
[pdf]
- Y. Cheng, F. X. Yu, R. S. Feris, S. Kumar,
A. Choudhary, and S. F. Chang
An Exploration of Parameter Redundancy in Deep Networks with
Circulant Projections
International Conference on Computer Vision (ICCV), 2015.
[pdf]
- R. Guo, S. Kumar, K. Choromanski, and D. Simcha
Quantization based Fast Inner Product Search
arXiv:1509.01469, 2015.
[pdf]
- W. Liu, C. Mu, S. Kumar,
and S. F. Chang
Discrete Graph Hashing
Neural Information Processing Systems (NIPS), 2014.
[pdf]
Supplementary material can be found here.
- F. X. Yu, S. Kumar, Y. Gong, and S. F. Chang
Circulant Binary Embedding
International Conference on Machine Learning (ICML), 2014.
[pdf]
Matlab code can be found here.
- F. X. Yu, D. Liu, S. Kumar, T. Jebara, and S. F. Chang
pSVM for Learning with Label Proportions
International Conference on Machine Learning (ICML), 2013.
[pdf]
The supplementary file with additional proofs and experiments is here.
- Y. Gong, S. Kumar, H. Rowley, and S. Lazebnik
Learning Binary Codes for High-Dimensional Data Using Bilinear Projections
IEEE Computer Vision and Pattern Recognition (CVPR), 2013.
[pdf]
- A. Talwalkar, S. Kumar, M. Mohri and H. Rowley
Large-scale SVD and Manifold Learning
Journal of Machine Learning Research (JMLR), 2013.
[pdf]
- Y. Gong, S. Kumar, V. Verma, and S. Lazebnik
Angular Quantization-based Binary Codes for Fast Similarity Search
Advances in Neural Information Processing Systems (NIPS), 2012.
[pdf]
- J. He, S. Kumar, and S. F. Chang
On the Difficulty of Nearest Neighbor Search
International Conference on Machine Learning (ICML), 2012.
[pdf]
The supplementary file containing all the proofs is here.
NOTE: This is a slightly edited version of what is in the ICML proceedings.
- W. Liu, J. Wang, Y. Mu, S. Kumar, and S. F. Chang
Compact Hyperplane Hashing with Bilinear Functions
International Conference on Machine Learning (ICML), 2012.
[pdf]
The supplementary file containing extended proofs and results is here.
- J. Wang, S. Kumar, and S. F. Chang
Semi-Supervised Hashing for Large Scale Search
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2012.
[pdf]
- S. Kumar, M. Mohri and A. Talwalkar
Sampling Methods for the Nystrom Method
Journal of Machine Learning Research (JMLR), 2012.
[pdf]
- W. Liu, J. Wang, S. Kumar, and S. F. Chang
Hashing With Graphs
International Conference on Machine Learning (ICML), 2011.
[pdf]
- A. Talwalkar, S. Kumar, M. Mohri, and H. Rowley
Large-Scale Manifold Learning
Book chapter in Manifold Learning Theory and Applications. Editors: Y. Ma and Y. Fu. CRC Press, 2011.
[pdf]
- S. Kumar, M. Mohri and A. Talwalkar
Ensemble Nystrom
Book chapter in Ensemble Machine Learning: Theory and Applications, Springer, 2011.
[pdf]
- A. Makadia, V. Pavlovic and S. Kumar
Baselines for Image Annotation
International Journal on Computer Vision (IJCV), 2010.
[pdf]
- J. Wang, S. Kumar, and S. F. Chang
Sequential Projection Learning for Hashing with Compact Codes
International Conference on Machine Learning (ICML), 2010.
[pdf]
- Z. Wang, M. Zhao, Y. Song, S. Kumar, and B. Li
YouTubeCat: Learning to Categorize Wild Web Videos
IEEE Computer Vision and Pattern Recognition (CVPR), 2010.
[pdf]
- J. Wang, S. Kumar, and S. F. Chang
Semi-Supervised Hashing for Scalable Image Retrieval
IEEE Computer Vision and Pattern Recognition (CVPR), 2010.
[pdf]
- S. Kumar, M. Mohri and A. Talwalkar
Ensemble Nystrom Method
Neural Information Processing Systems (NIPS), 2009.
[pdf]
Modified to correct an error in the computational complexity analysis. April 2011.
- S. Kumar, M. Mohri and A. Talwalkar
On Sampling-based Approximate Spectral Decomposition
International Conference on Machine Learning (ICML), 2009.
[pdf]
- S. Kumar, M. Mohri and A. Talwalkar
Sampling Techniques for the Nystrom Method
Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS), 2009.
[pdf]
- A. Makadia, V. Pavlovic and S. Kumar
A New Baseline for Image Annotation
European Conference on Computer Vision (ECCV), 2008.
[pdf]
- A. Talwalkar, S. Kumar, and H. A. Rowley
Large-Scale Manifold Learning
IEEE Computer Vision and Pattern Recognition (CVPR), 2008.
[pdf]
- M. Kim, S. Kumar, V. Pavlovic and H. A. Rowley
Face Tracking and Recognition with Visual Constraints in Real-World Videos
IEEE Computer Vision and Pattern Recognition (CVPR), 2008.
[pdf]
- S. Kumar and H. A. Rowley
Classification of Weakly-Labeled Data with Partial Equivalence Relations
IIEEE International Conference on Computer Vision (ICCV), 2007.
[pdf]
Some additional results and parts of the video and retrieval datasets used in this work can be seen here.
- S. Kumar and M. Hebert
Discriminative Random Fields
International Journal of Computer Vision (IJCV), 68(2), 179-201, 2006.
[pdf]
- S. Kumar, J. August and M. Hebert
Exploiting Inference for Approximate Parameter Learning in Discriminative Fields: An Empirical Study
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR), 2005.
[pdf]
This paper is an extended and revised version of the earlier work presented in Snowbird Learning Workshop, 2004.
- Sanjiv Kumar
Models for Learning Spatial Interactions in Natural Images for Context-Based Classification
PhD Thesis, The Robotics Institute, School of Computer Science, Carnegie Mellon University, September 2005.
[pdf]
- S. Kumar and M. Hebert
A Hierarchical Field Framework for Unified Context-Based Classification
IEEE International Conference on Computer Vision (ICCV), 2005.
[pdf]
- C. Rother, S. Kumar, V. Kolmogorov and A. Blake
Digital Tapestry
International Conference on Computer Vision and Pattern Recognition (CVPR), June, 2005.
[pdf]
- S. Kumar and M. Hebert
Approximate Parameter Learning in Discriminative Fields
Snowbird Learning Workshop, Utah, 2004.
[pdf]
The synthetic dataset used for learning and inference experiments can be obtained from here.
- S. Kumar and M. Hebert
Multiclass Discriminative Fields for Parts-Based Object Detection
Snowbird Learning Workshop, Utah, 2004.
[pdf]
- S. Kumar and M. Hebert
Discriminative Fields for Modeling Spatial Dependencies in Natural Images
Advances in Neural Information Processing Systems, NIPS 16, 2004.
[pdf]
The binary denoising synthetic dataset used for training and testing can be obtained from here.
- S. Kumar and M. Hebert
Discriminative Random Fields: A Discriminative Framework for Contextual Interaction in Classification
IEEE International Conference on Computer Vision (ICCV), 2003.
[pdf]
- S. Kumar and M. Hebert
Man-Made Structure Detection in Natural Images using a Causal Multiscale Random Field
IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2003.
[pdf]
Some more example results and comparisons.
The structure detection database used for training and testing can be obtained from here.
- S. Kumar, A. C. Loui, and M. Hebert
An Observation-Constrained Generative Approach for Probabilistic Classification of Image Regions
Image and Vision Computing, 21, pp. 87-97, 2003.
[pdf]
- S. Kumar, A. C. Loui, and M. Hebert
Probabilistic Classification of Image Regions using an Observation-Constrained Generative Approach
ECCV Workshop on Generative Models based Vision (GMBV), 2002.
[pdf]
Medical Imaging and Robotics
- B. Nabbe, S. Kumar, and M. Hebert
Path Planning with Hallucinated Worlds
In Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2004.
[pdf]
- S. Kumar, M. I. Kassim, and K. V. Asari
Design of a Vision-guided Microrobotic Colonoscopy System
International Journal of Advanced Robotics, vol. 14, no. 2, pp. 87-104, 2000.
[link]
- K. V. Asari, S. Kumar, and M. I. Kassim
A Fully Autonomous Microrobotic Endoscopy System
Journal of Intelligent and Robotic Systems, vol. 28, pp. 325-341, 2000.
[link]
- K. V. Asari, S. Kumar, and D. Radhakrishnan
A New Approach for Nonlinear Distortion Correction in Endoscopic Images Based on Least Squares Estimation
IEEE Transactions on Medical Imaging, vol. 18, no. 4, pp. 345-354,1999.
[link]
- S. Kumar, K. V. Asari, and D. Radhakrishnan
Real-Time Automatic Extraction of Lumen Region and Boundary from Endoscopic Images
IEE Journal of Medical of Biological Engineering and Computing, vol. 37, pp. 600-604, 1999.
[link]
- S. Kumar, K. V. Asari, and D. Radhakrishnan
Real-Time Automatic Extraction of Lumen Region and Boundary from Endoscopic Images
IEE Journal of Medical & Biological Engineering and Computing, vol. 37, pp. 600-604, 1999.
[link]
- K. V. Asari, S. Kumar, and D. Radhakrishnan
Technique of Distortion Correction in Endoscopic Images using a Polynomial Expansion
IEE Journal of Medical & Biological Engineering and Computing, vol. 37, no. 1, pp. 8-12, 1999.
[link]
- K. V. Asari, T. Srikanthan, S. Kumar, and D. Radhakrishnan
A Pipelined Architecture for Image Segmentation by Adaptive Progressive Thresholding
Journal of Microprocessors and Microsystems, vol. 23, no. 8-9, pp. 493-499, 1999.
- S. Kumar, K. Vijayan Asari, and D. Radhakrishnan
Online Extraction of Lumen Region and Boundary from Endoscopic Images Using a Quad Structure
IEE Conference on Image Processing and its Applications (IPA), pp. 818-822, 1999.
- S. M. Krishnan, S. Kumar, C. J. Yap, M. I. Kassim, and P. M. Y. Goh
Development of a Microrobotic System for Intelligent Endoscopy
2nd Scientific Meet. of Biomed. Eng. Soc., Singapore, January 1999.
- S. M. Krishnan, S. Kumar, C. J. Yap, M. I. Kassim, and P.M. Y Goh
A Computer-Based Endoscopic Image Segmentation Technique for Lumen Extraction
Int. Congress and Exhibition on Comp. Asst. Radio. Surgery, Paris, June, 1999.
- S. M. Krishnan, S. Kumar, C. J. Yap, M. I. Kassim, and P.M. Y Goh
A Computer-Based Endoscopic Image Segmentation Technique for Lumen Extraction
Int. Congress and Exhibition on Comp. Asst. Radio. Surgery, Paris, June, 1999.
- S. M. Krishnan, S. Kumar, C. J. Yap, M. I. Kassim, and P.M. Y Goh
Computer-Assisted Intelligent Endoscopy
Int. Congress and Exhibition on Comp. Asst. Radio. Surgery, Paris, June, 1999.
- S. Kumar, M. Singaperumal and Y. G. Srinivasa
Design of a Self Guided Vehicle (SGV) with Laser Based Navigation System
National Seminar on Mechatronics, India, Madras, 1997.