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6.1 Introduction

The problem of dimensionality reduction arises in many computer vision appli-
cations, where it is natural to represent images as vectors in a high-dimensional
space. Manifold learning techniques extract low-dimensional structure from
high-dimensional data in an unsupervised manner. These techniques typically
try to unfold the underlying manifold so that some quantity, e.g., pairwise
geodesic distances, is maintained invariant in the new space. This makes cer-
tain applications such as K-means clustering more effective in the transformed
space.

In contrast to linear dimensionality reduction techniques such as Principal
Component Analysis (PCA), manifold learning methods provide more power-
ful non-linear dimensionality reduction by preserving the local structure of the
input data. Instead of assuming global linearity, these methods typically make
a weaker local-linearity assumption, i.e., for nearby points in high-dimensional
input space, l2 distance is assumed to be a good measure of geodesic distance,
or distance along the manifold. Good sampling of the underlying manifold is
essential for this assumption to hold. In fact, many manifold learning techniques
provide guarantees that the accuracy of the recovered manifold increases as the
number of data samples increases. In the limit of infinite samples, one can re-
cover the true underlying manifold for certain classes of manifolds (Tenenbaum
et al., 2000; Belkin & Niyogi, 2006; Donoho & Grimes, 2003). However, there is
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a trade-off between improved sampling of the manifold and the computational
cost of manifold learning algorithms. In this chapter, we address the compu-
tational challenges involved in learning manifolds given millions of face images
extracted from the Web.

Several manifold learning techniques have been proposed, e.g., Semidefi-
nite Embedding (SDE) (Weinberger & Saul, 2006), Isomap (Tenenbaum et al.,
2000), Laplacian Eigenmaps (Belkin & Niyogi, 2001) and Local Linear Embed-
ding (LLE) (Roweis & Saul, 2000). SDE aims to preserve distances and angles
between all neighboring points. It is formulated as an instance of semidefi-
nite programming, and is thus prohibitively expensive for large-scale problems.
Isomap constructs a dense matrix of approximate geodesic distances between
all pairs of inputs, and aims to find a low dimensional space that best preserves
these distances. Other algorithms, e.g., Laplacian Eigenmaps and LLE, focus
only on preserving local neighborhood relationships in the input space. They
generate low-dimensional representations via manipulation of the graph Lapla-
cian or other sparse matrices related to the graph Laplacian (Chapelle et al.,
2006). In this chapter, we focus mainly on Isomap and Laplacian Eigenmaps,
as both methods have good theoretical properties and the differences in their
approaches allow us to make interesting comparisons between dense and sparse
methods.

All of the manifold learning methods described above can be viewed as spe-
cific instances of Kernel PCA (Ham et al., 2004). These kernel-based algorithms
require SVD of matrices of size n× n, where n is the number of samples. This
generally takes O(n3) time. When only a few singular values and singular vec-
tors are required, there exist less computationally intensive techniques such as
Jacobi, Arnoldi, Hebbian and more recent randomized methods (Golub & Loan,
1983; Gorrell, 2006; Rokhlin et al., 2009). These iterative methods require com-
putation of matrix-vector products at each step and involve multiple passes
through the data. When the matrix is sparse, these techniques can be imple-
mented relatively efficiently. However, when dealing with a large, dense matrix,
as in the case of Isomap, these products become expensive to compute. More-
over, when working with 18M data points, it is not possible even to store the
full 18M× 18M matrix (∼1300TB), rendering the iterative methods infeasible.
Random sampling techniques provide a powerful alternative for approximate
SVD and only operate on a subset of the matrix.

In this chapter, we examine both the Nyström and Column sampling meth-
ods (defined in Section 6.3), providing the first direct comparison between their
performances on practical applications. The Nyström approximation has been
studied in the machine learning community (Williams & Seeger, 2000) (Drineas
& Mahoney, 2005). In parallel, Column sampling techniques have been analyzed
in the theoretical Computer Science community (Frieze et al., 1998; Drineas
et al., 2006; Deshpande et al., 2006). However, prior to initial work in Tal-
walkar et al. (2008); Kumar et al. (2009a), the relationship between these
approximations had not been well studied. We provide an extensive analysis of
these algorithms, show connections between these approximations and provide
a direct comparison between their performances.
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Apart from singular value decomposition, the other main computational
hurdle associated with Isomap and Laplacian Eigenmaps is large-scale graph
construction and manipulation. These algorithms first need to construct a local
neighborhood graph in the input space, which is an O(n2) problem given n data
points. Moreover, Isomap requires shortest paths between every pair of points
requiring O(n2 log n) computation. Both of these steps become intractable when
n is as large as 18M. In this study, we use approximate nearest neighbor meth-
ods, and explore random sampling based SVD that requires the computation of
shortest paths only for a subset of points. Furthermore, these approximations
allow for an efficient distributed implementation of the algorithms.

We now summarize our main contributions. First, we present the largest
scale study so far on manifold learning, using 18M data points. To date, the
largest manifold learning study involves the analysis of music data using 267K
points (Platt, 2004). In vision, the largest study is limited to less than 10K
images (He et al., 2005). Second, we show connections between two random
sampling based singular value decomposition algorithms and provide the first
direct comparison of their performances. Finally, we provide a quantitative
comparison of Isomap and Laplacian Eigenmaps for large-scale face manifold
construction on clustering and classification tasks.

6.2 Background

In this section, we introduce notation (summarized in Table 6.1) and present ba-
sic definitions of two of the most common sampling-based techniques for matrix
approximation.

Table 6.1: Summary of notation used throughout this chapter. See Section 6.2.1
for further details.

T arbitrary matrix in R
a×b

T(j) jth column vector of T for j = 1 . . . b
T(i) ith row vector of T for i = 1 . . . a

T(i:j),T(i:j) ith through jth columns / rows of T
Tk ‘best’ rank-k approximation to T

‖·‖2, ‖·‖F Spectral, Frobenius norms of T
v arbitrary vector in R

a

‖·‖ l2 norm of a vector
T = UTΣTV

⊤
T Singular Value Decomposition (SVD) of T

K SPSD kernel matrix in R
n×n with rank(K) = r ≤ n

K = UΣV⊤ SVD of K
K+ Pseudo-inverse of K

K̃ approximation to K derived from l ≪ n of its columns
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6.2.1 Notation

Let T ∈ R
a×b be an arbitrary matrix. We define T(j), j = 1 . . . b, as the jth

column vector of T, T(i), i = 1 . . . a, as the ith row vector of T and ‖·‖ the l2
norm of a vector. Furthermore, T(i:j) refers to the ith through jth columns of
T and T(i:j) refers to the ith through jth rows of T. We denote by Tk the ‘best’
rank-k approximation to T, i.e., Tk=argmin

V∈Ra×b,rank(V)=k‖T−V‖ξ, where
ξ ∈ {2, F} and ‖·‖2 denotes the spectral norm and ‖·‖F the Frobenius norm of a
matrix. Assuming that rank(T) = r, we can write the compact Singular Value
Decomposition (SVD) of this matrix as T = UTΣTV

⊤
T where ΣT is diagonal

and contains the singular values of T sorted in decreasing order and UT ∈ R
a×r

and VT ∈ R
b×r have orthogonal columns that contain the left and right singular

vectors of T corresponding to its singular values. We can then describe Tk in
terms of its SVD as Tk = UT,kΣT,kV

⊤
T,k where ΣT,k is a diagonal matrix of

the top k singular values of T and UT,k and VT,k are the associated left and
right singular vectors.

Now let K ∈ R
n×n be a symmetric positive semidefinite (SPSD) kernel

or Gram matrix with rank(K) = r ≤ n, i.e. a symmetric matrix for which
there exists an X ∈ R

N×n such that K = X⊤X. We will write the SVD
of K as K = UΣU⊤, where the columns of U are orthogonal and Σ =
diag(σ1, . . . , σr) is diagonal. The pseudo-inverse of K is defined as K+ =
∑r

t=1 σ
−1
t U(t)U(t)⊤, and K+ = K−1 when K is full rank. For k < r, Kk =

∑k
t=1 σtU

(t)U(t)⊤ = UkΣkU
⊤
k is the ‘best’ rank-k approximation to K, i.e.,

Kk =argmin
K′∈Rn×n,rank(K′)=k‖K −K′‖ξ∈{2,F}, with ‖K −Kk‖2 = σk+1 and

‖K−Kk‖F =
√∑r

t=k+1 σ
2
t (Golub & Loan, 1983).

We will be focusing on generating an approximation K̃ of K based on a
sample of l ≪ n of its columns. We assume that we sample columns uniformly
without replacement as suggested by Kumar et al. (2009b), though various
methods have been proposed to select columns (see Chapter 4 of Talwalkar
(2010) for more details on various sampling schemes). Let C denote the n ×
l matrix formed by these columns and W the l × l matrix consisting of the
intersection of these l columns with the corresponding l rows of K. Note that
W is SPSD since K is SPSD. Without loss of generality, the columns and rows
of K can be rearranged based on this sampling so that K and C be written as
follows:

K =

[
W K⊤

21

K21 K22

]
and C =

[
W

K21

]
. (6.1)

The approximation techniques discussed next use the SVD of W and C to
generate approximations for K.

6.2.2 Nyström method

The Nyström method was first introduced as a quadrature method for numerical
integration, used to approximate eigenfunction solutions (Nyström, 1928; Baker,
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1977). More recently, it was presented in Williams and Seeger (2000) to speed
up kernel algorithms and has been used in applications ranging from manifold
learning to image segmentation (Platt, 2004; Fowlkes et al., 2004; Talwalkar
et al., 2008). The Nyström method uses W and C from (6.1) to approximate
K. Assuming a uniform sampling of the columns, the Nyström method generates
a rank-k approximation K̃ of K for k < n defined by:

K̃
nys
k = CW+

k C
⊤ ≈ K, (6.2)

where Wk is the best k-rank approximation of W with respect to the spectral
or Frobenius norm and W+

k denotes the pseudo-inverse of Wk. If we write the
SVD of W as W = UWΣWU⊤

W , then from (6.2) we can write

K̃
nys
k = CUW,kΣ

+
W,kU

⊤
W,kC

⊤

=

(√
l

n
CUW,kΣ

+
W,k

)(
n

l
ΣW,k

)(√
l

n
CUW,kΣ

+
W,k

)⊤

,

and hence the Nyström method approximates the top k singular values (Σk)
and singular vectors (Uk) of K as:

Σ̃nys =
(n
l

)
ΣW,k and Ũnys =

√
l

n
CUW,kΣ

+
W,k. (6.3)

Since the running time complexity of compact SVD on W is in O(l2k) and
matrix multiplication with C takes O(nlk), the total complexity of the Nyström
approximation computation is in O(nlk).

6.2.3 Column sampling method

The Column sampling method was introduced to approximate the SVD of any
rectangular matrix (Frieze et al., 1998). It generates approximations of K by
using the SVD of C.5 If we write the SVD of C as C = UCΣCV

⊤
C then

the Column sampling method approximates the top k singular values (Σk) and
singular vectors (Uk) of K as:

Σ̃col =

√
n

l
ΣC,k and Ũcol = UC = CVC,kΣ

+
C,k. (6.4)

The runtime of the Column sampling method is dominated by the SVD of C.
The algorithm takes O(nlk) time to perform compact SVD on C, but is still
more expensive than the Nyström method as the constants for SVD are greater
than those for the O(nlk) matrix multiplication step in the Nyström method.

5The Nyström method also uses sampled columns of K, but the Column sampling method
is named so because it uses direct decomposition of C, while the Nyström method decomposes
its submatrix, W.
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6.3 Comparison of sampling methods

Given that two sampling-based techniques exist to approximate the SVD of
SPSD matrices, we pose a natural question: which method should one use
to approximate singular values, singular vectors and low-rank approximations?
We first analyze the form of these approximations and then empirically evaluate
their performance in Section 6.3.3 on a variety of datasets.

6.3.1 Singular values and singular vectors

As shown in (6.3) and (6.4), the singular values of K are approximated as
the scaled singular values of W and C, respectively. The scaling terms are
quite rudimentary and are primarily meant to compensate for the ‘small sample
size’ effect for both approximations. Formally, these scaling terms make the
approximations in (6.3) and (6.4) unbiased estimators of the true singular values.
The form of singular vectors is more interesting. The Column sampling singular
vectors (Ũcol) are orthonormal since they are the singular vectors of C. In

contrast, the Nyström singular vectors (Ũnys) are approximated by extrapolating

the singular vectors of W as shown in (6.3), and are not orthonormal. It is easy

to verify that Ũ⊤
nysŨnys 6= Il, where Il is the identity matrix of size l. As

we show in Section 6.3.3, this adversely affects the accuracy of singular vector
approximation from the Nyström method.

It is possible to orthonormalize the Nyström singular vectors by using QR
decomposition. Since Ũnys ∝ CUWΣ+

W , where UW is orthogonal and ΣW is
diagonal, this simply implies that QR decomposition creates an orthonormal
span of C rotated by UW . However, the complexity of QR decomposition of
Ũnys is the same as that of the SVD of C. Thus, the computational cost of

orthogonalizing Ũnys would nullify the computational benefit of the Nyström
method over Column sampling.

6.3.2 Low-rank approximation

Several studies have empirically shown that the accuracy of low-rank approxi-
mations of kernel matrices is tied to the performance of kernel-based learning
algorithms (Williams & Seeger, 2000; Talwalkar et al., 2008; Zhang et al., 2008).
Furthermore, the effect of an approximation in the kernel matrix on the hypoth-
esis generated by several widely used kernel-based learning algorithms has been
theoretically analyzed (Cortes et al., 2010). Hence, accurate low-rank approx-
imations are of great practical interest in machine learning. As discussed in
Section 6.2.1, the optimal Kk is given by,

Kk = UkΣkU
⊤
k = UkU

⊤
k K = KUkU

⊤
k (6.5)

where the columns of Uk are the k singular vectors of K corresponding to the
top k singular values of K. We refer to UkΣkU

⊤
k as Spectral Reconstruction,

since it uses both the singular values and vectors of K, and UkU
⊤
k K as Matrix
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Projection, since it uses only singular vectors to compute the projection of K
onto the space spanned by vectors Uk. These two low-rank approximations are
equal only if Σk and Uk contain the true singular values and singular vectors
of K. Since this is not the case for approximate methods such as Nyström
and Column sampling these two measures generally give different errors. From
an application point of view, matrix projection approximations, although they
can be quite accurate, are not necessarily symmetric and require storage of and
multiplication with K. Hence, although matrix projection is often analyzed the-
oretically, for large-scale problems, the storage and computational requirements
may be inefficient or even infeasible. As such, in the context of large-scale man-
ifold learning, we focus on spectral reconstructions in this chapter (for further
discussion on matrix projection, see Kumar et al. (2009a)).

Using (6.3), the Nyström spectral reconstruction is:

K̃
nys
k = Ũnys,kΣ̃nys,kŨ

⊤
nys,k = CW+

k C
⊤. (6.6)

When k = l, this approximation perfectly reconstructs three blocks of K, and
K22 is approximated by the Schur Complement of W in K:

K̃
nys
l = CW+C⊤ =

[
W K⊤

21

K21 K21W
+K21

]
. (6.7)

The Column sampling spectral reconstruction has a similar form as (6.6):

K̃col
k = Ũcol,kΣ̃col,kŨ

⊤
col,k =

√
n/lC

(
(C⊤C)

1

2

k

)+
C⊤. (6.8)

Note that a scaling term appears in the Column sampling reconstruction. To
analyze the two approximations, we consider an alternative characterization
using the fact that K = X⊤X for some X ∈ R

N×n. Similar to Drineas and
Mahoney (2005), we define a zero-one sampling matrix, S ∈ R

n×l, that selects l
columns fromK, i.e., C = KS. Each column of S has exactly one non-zero entry
per column. Further, W = S⊤KS = (XS)⊤XS = X′⊤X′, where X′ ∈ R

N×l

contains l sampled columns of X and X′ = UX′ΣX′V⊤
X′ is the SVD of X′. We

use these definitions to present Theorems 1 and 2.

Theorem 1 Column sampling and Nyström spectral reconstructions of rank k
are of the form

X⊤UX′,kZU
⊤
X′,kX ,

where Z ∈ R
k×k is SPSD. Further, among all approximations of this form,

neither the Column sampling nor the Nyström approximation is optimal (in
‖·‖F ).

Proof. If α =
√

n/l, then starting from (6.8) and expressing C and W in
terms of X and S, we have

K̃col
k =αKS((S⊤K2S)

1/2
k )+S⊤K⊤

=αX⊤X′
(
(VC,kΣ

2
C,kV

⊤
C,k)

1/2
)+

X′⊤X

=X⊤UX′,kZcolU
⊤
X′,kX, (6.9)



8 CHAPTER 6. LARGE-SCALE MANIFOLD LEARNING

where Zcol = αΣX′V⊤
X′VC,kΣ

+
C,kV

⊤
C,kVX′ΣX′ . Similarly, from (6.6) we have:

K̃
nys
k =KS(S⊤KS)+k S

⊤K⊤

=X⊤X′
(
X′⊤X′

)+
k
X′⊤X

=X⊤UX′,kU
⊤
X′,kX. (6.10)

Clearly, Znys = Ik. Next, we analyze the error, E, for an arbitrary Z, which

yields the approximation K̃Z
k :

E = ‖K− K̃Z
k ‖

2
F = ‖X⊤(IN −UX′,kZU

⊤
X′,k)X‖2F . (6.11)

Let X = UXΣXV⊤
X and Y = U⊤

XUX′,k. Then,

E = Tr
[(
(IN −UX′,kZU

⊤
X′,k)UXΣ2

XU⊤
X

)2]

=Tr
[(
UXΣXU⊤

X(IN −UX′,kZU
⊤
X′,k)UXΣXU⊤

X

)2]

=Tr
[(
UXΣX(IN −YZY⊤)ΣXU⊤

X

)2]

=Tr
[
ΣX(IN −YZY⊤)Σ2

X(IN −YZY⊤)ΣX

)]

=Tr
[
Σ4

X − 2Σ2
XYZY⊤Σ2

X +ΣXYZY⊤Σ2
XYZY⊤ΣX

)]
. (6.12)

To find Z∗, the Z that minimizes (6.12), we use the convexity of (6.12) and set:

∂E/∂Z = −2Y⊤Σ4
XY + 2(Y⊤Σ2

XY)Z∗(Y⊤Σ2
XY) = 0

and solve for Z∗, which gives us:

Z∗ = (Y⊤Σ2
XY)+(Y⊤Σ4

XY)(Y⊤Σ2
XY)+.

Z∗ = Znys = Ik if Y = Ik, though Z∗ does not in general equal either Zcol

or Znys, which is clear by comparing the expressions of these three matrices.6

Furthermore, since Σ2
X = ΣK , Z∗ depends on the spectrum of K. 2

While Theorem 1 shows that the optimal approximation is data dependent
and may differ from the Nyström and Column sampling approximations, Theo-
rem 2 presented below reveals that in certain instances the Nyström method is
optimal. In contrast, the Column sampling method enjoys no such guarantee.

Theorem 2 Let r = rank(K) ≤ k ≤ l and rank(W) = r. Then, the Nyström

approximation is exact for spectral reconstruction. In contrast, Column sampling

is exact iff W =
(
(l/n)C⊤C

)1/2
. When this specific condition holds, Column-

Sampling trivially reduces to the Nyström method.

Proof. Since K = X⊤X, rank(K) = rank(X) = r. Similarly, W = X′⊤X′

implies rank(X′) = r. Thus the columns of X′ span the columns of X and UX′,r

6This fact is illustrated in our experimental results for the ‘DEXT’ dataset in Figure 6.2(a).
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Table 6.2: Description of the datasets used in our experiments comparing
sampling-based matrix approximations (Sim et al., 2002; LeCun & Cortes, 1998;
Talwalkar et al., 2008). ‘n’ denotes the number of points and ‘d’ denotes the
data dimensionality, i.e., the number of features in input space.

Dataset Data n d Kernel
PIE-2.7K faces 2731 2304 linear
PIE-7K faces 7412 2304 linear
MNIST digits 4000 784 linear
ESS proteins 4728 16 RBF
ABN abalones 4177 8 RBF

is an orthonormal basis for X, i.e., IN − UX′,rU
⊤
X′,r ∈ Null(X). Since k ≥ r,

from (6.10) we have

‖K− K̃
nys
k ‖F = ‖X⊤(IN −UX′,rU

⊤
X′,r)X‖F = 0, (6.13)

which proves the first statement of the theorem. To prove the second state-

ment, we note that rank(C) = r. Thus, C = UC,rΣC,rV
⊤
C,r and (C⊤C)

1/2
k =

(C⊤C)1/2 = VC,rΣC,rV
⊤
C,r since k ≥ r. If W = (1/α)(C⊤C)1/2, then the

Column sampling and Nyström approximations are identical and hence exact.
Conversely, to exactly reconstruct K, Column sampling necessarily reconstructs
C exactly. Using C⊤ = [W K⊤

21] in (6.8) we have:

K̃col
k = K =⇒ αC

(
(C⊤C)

1

2

k

)+
W = C (6.14)

=⇒ αUC,rV
⊤
C,rW = UC,rΣC,rV

⊤
C,r (6.15)

=⇒ αVC,rV
⊤
C,rW = VC,rΣC,rV

⊤
C,r (6.16)

=⇒ W =
1

α
(C⊤C)1/2. (6.17)

In (6.16) we use U⊤
C,rUC,r = Ir, while (6.17) follows since VC,rV

⊤
C,r is an

orthogonal projection onto the span of the rows of C and the columns of W lie
within this span implying VC,rV

⊤
C,rW = W. 2

6.3.3 Experiments

To test the accuracy of singular values/vectors and low-rank approximations for
different methods, we used several kernel matrices arising in different applica-
tions, as described in Table 6.2. We worked with datasets containing less than
ten thousand points to be able to compare with exact SVD. We fixed k to be
100 in all the experiments, which captures more than 90% of the spectral energy
for each dataset.

For singular values, we measured percentage accuracy of the approximate
singular values with respect to the exact ones. For a fixed l, we performed 10
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trials by selecting columns uniformly at random from K. We show in Figure
6.1(a) the difference in mean percentage accuracy for the two methods for l =
n/10, with results bucketed by groups of singular values, i.e., we sorted the
singular values in descending order, grouped them as indicated in the figure, and
report the average percentage accuracy for each group. The empirical results
show that the Column sampling method generates more accurate singular values
than the Nyström method. A similar trend was observed for other values of l.

For singular vectors, the accuracy was measured by the dot product i.e.,
cosine of principal angles between the exact and the approximate singular vec-
tors. Figure 6.1(b) shows the difference in mean accuracy between Nyström and
Column sampling methods, once again bucketed by groups of singular vectors
sorted in descending order based on their corresponding singular values. The
top 100 singular vectors were all better approximated by Column sampling for
all datasets. This trend was observed for other values of l as well. Further-
more, even when the Nyström singular vectors are orthogonalized, the Column
sampling approximations are superior, as shown in Figure 6.1(c).

Next we compared the low-rank approximations generated by the two meth-
ods using spectral reconstruction as described in Section 6.3.2. We measured
the accuracy of reconstruction relative to the optimal rank-k approximation,
Kk, as:

relative accuracy =
‖K−Kk‖F

‖K− K̃
nys/col
k ‖F

. (6.18)

The relative accuracy will approach one for good approximations. Results are
shown in Figure 6.2(a). The Nyström method produces superior results for spec-
tral reconstruction. These results are somewhat surprising given the relatively
poor quality of the singular values/vectors for the Nyström method, but they
are in agreement with the consequences of Theorem 2. Furthermore, as stated
in Theorem 1, the optimal spectral reconstruction approximation is tied to the
spectrum of K. Our results suggest that the relative accuracies of Nyström and
Column sampling spectral reconstructions are also tied to this spectrum. When
we analyzed spectral reconstruction performance on a sparse kernel matrix with
a slowly decaying spectrum, we found that Nyström and Column sampling ap-
proximations were roughly equivalent (‘DEXT’ in Figure 6.2(a)). This result
contrasts the results for dense kernel matrices with exponentially decaying spec-
tra arising from the other datasets used in the experiments.

One factor that impacts the accuracy of the Nyström method for some tasks
is the non-orthonormality of its singular vectors (Section 6.3.1). Although or-
thonormalization is computationally costly and typically avoided in practice,
we nonetheless evaluated the effect of such orthonormalization. Empirically,
the accuracy of Orthonormal Nyström spectral reconstruction is actually worse
relative to the standard Nyström approximation, as shown in Figure 6.2(b).
This surprising result can be attributed to the fact that orthonormalization of
the singular vectors leads to the loss of some of the unique properties described
in Section 6.3.2. For instance, Theorem 2 no longer holds and the scaling terms
do not cancel out, i.e., K̃nys

k 6= CW+
k C

⊤.
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Figure 6.1: Differences in accuracy between Nyström and Column-Sampling.
Values above zero indicate better performance of Nyström and vice-versa. (a)
Top 100 singular values with l = n/10. (b) Top 100 singular vectors with
l = n/10. (c) Comparison using orthogonalized Nyström singular vectors.

6.4 Large-scale Manifold Learning

In the previous section, we discussed two sampling-based techniques that gen-
erate approximations for kernel matrices. Although we analyzed the effective-
ness of these techniques for approximating singular values, singular vectors and
low-rank matrix reconstruction, we have yet to discuss the effectiveness of these
techniques in the context of actual machine learning tasks. In fact, the Nyström
method has been shown to be successful on a variety of learning tasks includ-
ing Support Vector Machines (Fine & Scheinberg, 2002), Gaussian Processes
(Williams & Seeger, 2000), Spectral Clustering (Fowlkes et al., 2004), mani-
fold learning (Talwalkar et al., 2008), Kernel Logistic Regression (Karsmakers
et al., 2007), Kernel Ridge Regression (Cortes et al., 2010) and more generally
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Figure 6.2: Performance accuracy of spectral reconstruction approximations for
different methods with k = 100. Values above zero indicate better performance
of the Nyström method. (a) Nyström versus Column sampling. (b) Nyström
versus Orthonormal Nyström.

to approximate regularized matrix inverses via the Woodbury approximation
(Williams & Seeger, 2000). In this section, we will discuss in detail how ap-
proximate embeddings can be used in the context of manifold learning, relying
on the sampling based algorithms from the previous section to generate an ap-
proximate SVD. In particular, we present the largest study to date for manifold
learning, and provide a quantitative comparison of Isomap and Laplacian Eigen-
maps for large scale face manifold construction on clustering and classification
tasks.

6.4.1 Manifold learning

Manifold learning considers the problem of extracting low-dimensional structure
from high-dimensional data. Given n input points, X = {xi}

n
i=1 and xi ∈ R

d,
the goal is to find corresponding outputs Y = {yi}

n
i=1, where yi ∈ R

k, k ≪ d,
such that Y ‘faithfully’ represents X. We now briefly review the Isomap and
Laplacian Eigenmaps techniques to discuss their computational complexity.

Isomap

Isomap aims to extract a low-dimensional data representation that best pre-
serves all pairwise distances between input points, as measured by their geodesic
distances along the manifold (Tenenbaum et al., 2000). It approximates the
geodesic distance assuming that input space distance provides good approxi-
mations for nearby points, and for faraway points it estimates distance as a
series of hops between neighboring points. This approximation becomes exact
in the limit of infinite data. Isomap can be viewed as an adaptation of Classical
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Multidimensional Scaling (Cox et al., 2000), in which geodesic distances replace
Euclidean distances.

Computationally, Isomap requires three steps:

1. Find the t nearest neighbors for each point in input space and construct
an undirected neighborhood graph, denoted by G, with points as nodes
and links between neighbors as edges. This requires O(n2) time.

2. Compute the approximate geodesic distances, ∆ij , between all pairs of
nodes (i, j) by finding shortest paths in G using Dijkstra’s algorithm at
each node. Perform double centering, which converts the squared distance
matrix into a dense n× n similarity matrix, i.e., compute K = − 1

2HDH,
where D is the squared distance matrix, H = In − 1

n11
⊤ is the centering

matrix, In is the n × n identity matrix and 1 is a column vector of all
ones. This step takes O(n2 log n) time, dominated by the calculation of
geodesic distances.

3. Find the optimal k dimensional representation, Y = {yi}
n
i=1, such that

Y = argmin
Y′

∑
i,j

(
‖y′

i − y′
j‖

2
2 −∆2

ij

)
. The solution is given by,

Y = (Σk)
1/2U⊤

k (6.19)

where Σk is the diagonal matrix of the top k singular values of K and
Uk are the associated singular vectors. This step requires O(n2) space for
storing K, and O(n3) time for its SVD.

The time and space complexities for all three steps are intractable for n = 18M.

Laplacian Eigenmaps

Laplacian Eigenmaps aims to find a low-dimensional representation that best
preserves neighborhood relations as measured by a weight matrix W (Belkin &
Niyogi, 2001).7 The algorithm works as follows:

1. Similar to Isomap, first find t nearest neighbors for each point. Then
construct W, a sparse, symmetric n × n matrix, where Wij = exp

(
−

‖xi − xj‖
2
2/σ

2
)
if (xi,xj) are neighbors, 0 otherwise, and σ is a scaling

parameter.

2. Construct the diagonal matrix D, such that Dii =
∑

j Wij , in O(tn) time.

3. Find the k dimensional representation by minimizing the normalized,
weighted distance between neighbors as,

Y = argmin
Y′

∑

i,j

(
Wij‖y

′
i − y′

j‖
2
2√

DiiDjj

)
. (6.20)

7The weight matrix should not be confused with the subsampled SPSD matrix, W, asso-
ciated with the Nyström method. Since sampling-based approximation techniques will not be
used with Laplacian Eigenmaps, the notation should be clear from the context.
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This objective function penalizes nearby inputs for being mapped to far-
away outputs, with ‘nearness’ measured by the weight matrixW (Chapelle
et al., 2006). To find Y, we define L = In − D−1/2WD−1/2 where
L ∈ R

n×n is the symmetrized, normalized form of the graph Laplacian,
given by D−W. Then, the solution to the minimization in (6.20) is

Y = U⊤
L,k (6.21)

where U⊤
L,k are the bottom k singular vectors of L, excluding the last

singular vector corresponding to the singular value 0. Since L is sparse,
it can be stored in O(tn) space, and iterative methods, such as Lanczos,
can be used to find these k singular vectors relatively quickly.

To summarize, in both the Isomap and Laplacian Eigenmaps methods, the
two main computational efforts required are neighborhood graph construction
and manipulation and SVD of a symmetric positive semidefinite (SPSD) ma-
trix. In the next section, we further discuss the Nyström and Column sampling
methods in the context of manifold learning, and describe the graph operations
in Section 6.4.3.

6.4.2 Approximation experiments

Since we use sampling-based SVD approximation to scale Isomap, we first ex-
amined how well the Nyström and Column sampling methods approximated
our desired low-dimensional embeddings, i.e., Y = (Σk)

1/2U⊤
k . Using (6.3), the

Nyström low-dimensional embeddings are:

Ỹnys = Σ̃
1/2
nys,kŨ

⊤
nys,k =

(
(ΣW )

1/2
k

)+
U⊤

W,kC
⊤. (6.22)

Similarly, from (6.4) we can express the Column sampling low-dimensional em-
beddings as:

Ỹcol = Σ̃
1/2
col,kŨ

⊤
col,k = 4

√
n

l

(
(ΣC)

1/2
k

)+
V⊤

C,kC
⊤. (6.23)

Both approximations are of a similar form. Further, notice that the optimal
low-dimensional embeddings are in fact the square root of the optimal rank k
approximation to the associated SPSD matrix, i.e., Y⊤Y = Kk, for Isomap. As
such, there is a connection between the task of approximating low-dimensional
embeddings and the task of generating low-rank approximate spectral recon-
structions, as discussed in Section 6.3.2. Recall that the theoretical analysis
in Section 6.3.2 as well as the empirical results in Section 6.3.3 both suggested
that the Nyström method was superior in its spectral reconstruction accuracy.
Hence, we performed an empirical study using the datasets from Table 6.2 to
measure the quality of the low-dimensional embeddings generated by the two
techniques and see if the same trend exists.

We measured the quality of the low-dimensional embeddings by calculating
the extent to which they preserve distances, which is the appropriate criterion
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Figure 6.3: Embedding accuracy of Nyström and Column-Sampling. Values
above zero indicate better performance of Nyström and vice-versa.

in the context of manifold learning. For each dataset, we started with a kernel
matrix, K, from which we computed the associated n × n squared distance
matrix, D, using the fact that ‖xi − xj‖

2 = Kii + Kjj − 2Kij . We then
computed the approximate low-dimensional embeddings using the Nyström and
Column sampling methods, and then used these embeddings to compute the
associated approximate squared distance matrix, D̃. We measured accuracy
using the notion of relative accuracy defined in (6.18), which can be expressed
in terms of distance matrices as:

relative accuracy =
‖D−Dk‖F

‖D− D̃‖F
,

where Dk corresponds to the distance matrix computed from the optimal k
dimensional embeddings obtained using the singular values and singular vectors
of K. In our experiments, we set k = 100 and used various numbers of sampled
columns, ranging from l = n/50 to l = n/5. Figure 6.3 presents the results of
our experiments. Surprisingly, we do not see the same trend in our empirical
results for embeddings as we previously observed for spectral reconstruction,
as the two techniques exhibit roughly similar behavior across datasets. As a
result, we decided to use both the Nyström and Column sampling methods for
our subsequent manifold learning study.

6.4.3 Large-scale learning

In this section, we outline the process of learning a manifold of faces. We
first describe the datasets used in our experiments. We then explain how to
extract nearest neighbors, a common step between Laplacian Eigenmaps and
Isomap. The remaining steps of Laplacian Eigenmaps are straightforward, so
the subsequent sections focus on Isomap, and specifically on the computational
efforts required to generate a manifold using Webfaces-18M.



16 CHAPTER 6. LARGE-SCALE MANIFOLD LEARNING

Datasets

We used two faces datasets consisting of 35K and 18M images. The CMU PIE
face dataset (Sim et al., 2002) contains 41, 368 images of 68 subjects under
13 different poses and various illumination conditions. A standard face detec-
tor extracted 35, 247 faces (each 48 × 48 pixels), which comprised our 35K set
(PIE-35K). We used this set because, being labeled, it allowed us to perform
quantitative comparisons. The second dataset, named Webfaces-18M, contains
18.2 million images of faces extracted from the Web using the same face detec-
tor. For both datasets, face images were represented as 2304 dimensional pixel
vectors which were globally normalized to have zero mean and unit variance.
No other pre-processing, e.g., face alignment, was performed. In contrast, He
et al. (2005) used well-aligned faces (as well as much smaller data sets) to learn
face manifolds. Constructing Webfaces-18M, including face detection and du-
plicate removal, took 15 hours using a cluster of several hundred machines. We
used this cluster for all experiments requiring distributed processing and data
storage.

Nearest neighbors and neighborhood graph

The cost of naive nearest neighbor computation is O(n2), where n is the size
of the dataset. It is possible to compute exact neighbors for PIE-35K, but for
Webfaces-18M this computation is prohibitively expensive. So, for this set, we
used a combination of random projections and spill trees (Liu et al., 2004) to
get approximate neighbors. Computing 5 nearest neighbors in parallel with spill
trees took ∼2 days on the cluster. Figure 6.4 shows the top 5 neighbors for a
few randomly chosen images in Webfaces-18M. In addition to this visualization,
comparison of exact neighbors and spill tree approximations for smaller subsets
suggested good performance of spill trees.

We next constructed the neighborhood graph by representing each image
as a node and connecting all neighboring nodes. Since Isomap and Laplacian
Eigenmaps require this graph to be connected, we used depth-first search to find
its largest connected component. These steps required O(tn) space and time.
Constructing the neighborhood graph for Webfaces-18M and finding the largest
connected component took 10 minutes on a single machine using the OpenFST
library (Allauzen et al., 2007).

For neighborhood graph construction, an ’appropriate’ choice of number of
neighbors, t, is crucial. A small t may give too many disconnected components,
while a large t may introduce unwanted edges. These edges stem from inade-
quately sampled regions of the manifold and false positives introduced by the
face detector. Since Isomap needs to compute shortest paths in the neighbor-
hood graph, the presence of bad edges can adversely impact these computations.
This is known as the problem of leakage or ‘short-circuits’ (Balasubramanian
& Schwartz, 2002). Here, we chose t = 5 and also enforced an upper limit
on neighbor distance to alleviate the problem of leakage. We used a distance
limit corresponding to the 95th percentile of neighbor distances in the PIE-35K
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Figure 6.4: Visualization of neighbors for Webfaces-18M. The first image in each
row is the input, and the next five are its neighbors.

No Upper Limit Upper Limit Enforced
t # Comp % Largest # Comp % Largest

1 1.7M 0.05 % 4.3M 0.03 %
2 97K 97.2 % 285K 80.1 %
3 18K 99.3 % 277K 82.2 %
5 1.9K 99.9 % 275K 83.1 %

Table 6.3: Number of components in the Webfaces-18M neighbor graph and the
percentage of images within the largest connected component (‘% Largest’) for
varying numbers of neighbors (t) with and without an upper limit on neighbor
distances.

dataset.

Table 6.3 shows the effect of choosing different values for t with and without
enforcing the upper distance limit. As expected, the size of the largest connected
component increases as t increases. Also, enforcing the distance limit reduces
the size of the largest component. Figure 6.5 shows a few random samples from
the largest component. Images not within the largest component are either part
of a strongly connected set of images (Figure 6.6) or do not have any neighbors
within the upper distance limit (Figure 6.7). There are significantly more false
positives in Figure 6.7 than in Figure 6.5, although some of the images in Figure
6.7 are actually faces. Clearly, the distance limit introduces a trade-off between
filtering out non-faces and excluding actual faces from the largest component.8

8To construct embeddings with Laplacian Eigenmaps, we generated W and D from nearest
neighbor data for images within the largest component of the neighborhood graph and solved
(6.21) using a sparse eigensolver.
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Figure 6.5: A few random samples from the largest connected component of the
Webfaces-18M neighborhood graph.

Figure 6.6: Visualization of disconnected components of the neighborhood
graphs from Webfaces-18M (top row) and from PIE-35K (bottom row). The
neighbors for each of these images are all within this set, thus making the entire
set disconnected from the rest of the graph. Note that these images are not
exactly the same.

Figure 6.7: Visualization of disconnected components containing exactly one
image. Although several of the images above are not faces, some are actual
faces, suggesting that certain areas of the face manifold are not adequately
sampled by Webfaces-18M.
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Approximating geodesics

To construct the similarity matrix K in Isomap, one approximates geodesic
distance by shortest-path lengths between every pair of nodes in the neighbor-
hood graph. This requires O(n2 logn) time and O(n2) space, both of which are
prohibitive for 18M nodes. However, since we use sampling-based approximate
decomposition, we need only l ≪ n columns of K, which form the submatrix C.
We thus computed geodesic distance between l randomly selected nodes (called
landmark points) and the rest of the nodes, which required O(ln log n) time and
O(ln) space. Since this computation can easily be parallelized, we performed
geodesic computation on the cluster and stored the output in a distributed fash-
ion. The overall procedure took 60 minutes for Webfaces-18M using l = 10K.
The bottom four rows in Figure 6.9 show sample shortest paths for images
within the largest component for Webfaces-18M, illustrating smooth transitions
between images along each path.9

Generating low-dimensional embeddings

Before generating low-dimensional embeddings using Isomap, one needs to con-
vert distances into similarities using a process called centering (Cox et al.,
2000). For the Nyström approximation, we computed W by double centering
D, the l × l matrix of squared geodesic distances between all landmark nodes,
as W = − 1

2HDH, where H = Il −
1
l 11

⊤ is the centering matrix, Il is the l× l
identity matrix and 1 is a column vector of all ones. Similarly, the matrix C

was obtained from squared geodesic distances between the landmark nodes and
all other nodes using single-centering as described in de Silva and Tenenbaum
(2003).

For the Column sampling approximation, we decomposed C⊤C, which we
constructed by performing matrix multiplication in parallel on C. For both
approximations, decomposition on an l× l matrix (C⊤C or W) took about one
hour. Finally, we computed low-dimensional embeddings by multiplying the
scaled singular vectors from approximate decomposition with C. For Webfaces-
18M, generating low dimensional embeddings took 1.5 hours for the Nyström
method and 6 hours for the Column sampling method.

6.4.4 Manifold evaluation

Manifold learning techniques typically transform the data such that Euclidean
distance in the transformed space between any pair of points is meaningful,
under the assumption that in the original space Euclidean distance is meaningful
only in local neighborhoods. Since K-means clustering computes Euclidean
distances between all pairs of points, it is a natural choice for evaluating these
techniques. We also compared the performance of various techniques using

9In fact, the techniques we described in the context of approximating geodesic distances
via shortest path are currently used by Google for its “People Hopper” application which runs
on the social networking site Orkut (Kumar & Rowley, 2010).
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nearest neighbor classification. Since CMU-PIE is a labeled dataset, we first
focused on quantitative evaluation of different embeddings using face pose as
class labels. The PIE set contains faces in 13 poses, and such a fine sampling of
the pose space makes clustering and classification tasks very challenging. In all
the experiments we fixed the dimension of the reduced space, k, to be 100.

The first set of experiments was aimed at finding how well different Isomap
approximations perform in comparison to exact Isomap. We used a subset of
PIE with 10K images (PIE-10K) since, for this size, exact SVD could be done
on a single machine within reasonable time and memory limits. We fixed the
number of clusters in our experiments to equal the number of pose classes, and
measured clustering performance using two measures, Purity and Accuracy.
Purity measures the frequency of data belonging to the same cluster sharing
the same class label, while Accuracy measures the frequency of data from the
same class appearing in a single cluster. Thus, ideal clustering will have 100%
Purity and 100% Accuracy.

Table 6.4 shows that clustering with Nyström Isomap with just l=1K per-
forms almost as well as exact Isomap on this dataset10. This matches with the
observation made in Williams and Seeger (2000), where the Nyström approxi-
mation was used to speed up kernel machines. Also, Column sampling Isomap
performs slightly worse than Nyström Isomap. The clustering results on the
full PIE-35K set (Table 6.5) with l = 10K also affirm this observation. Fig-
ure 6.8 shows the optimal 2D projections from different methods for PIE-35K.
The Nyström method separates the pose clusters better than Column sampling
verifying the quantitative results.

The fact that Nyström outperforms Column sampling is somewhat surpris-
ing given the experimental evaluations in Section 6.4.2, where we found the two
approximation techniques to achieve similar performance. One possible rea-
son for the poor performance of Column sampling Isomap is due to the form
of the similarity matrix K. When using a finite number of data points for
Isomap, K is not guaranteed to be SPSD. We verified that K was not SPSD
in our experiments, and a significant number of top eigenvalues, i.e., those with
largest magnitudes, were negative. The two approximation techniques differ in
their treatment of negative eigenvalues and the corresponding eigenvectors. The
Nyström method allows one to use eigenvalue decomposition (EVD) of W to
yield signed eigenvalues, making it possible to discard the negative eigenvalues
and the corresponding eigenvectors. On the contrary, it is not possible to dis-
card these in the Column-based method, since the signs of eigenvalues are lost in
the SVD of the rectangular matrix C (or EVD of C⊤C). Thus, the presence of
negative eigenvalues deteriorates the performance of Column sampling method
more than the Nyström method.

Tables 6.4 and 6.5 also show a significant difference in the Isomap and Lapla-
cian Eigenmaps results. The 2D embeddings of PIE-35K (Figure 6.8) reveal that
Laplacian Eigenmaps projects data points into a small compact region, consis-
tent with its objective function defined in (6.20), as it tends to map neighboring

10The differences are statistically insignificant.
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Methods Purity (%) Accuracy (%)
PCA 54.3 (±0.8) 46.1 (±1.4)

Exact Isomap 58.4 (±1.1) 53.3 (±4.3)
Nyström Isomap 59.1 (±0.9) 53.3 (±2.7)

Col-Sampling Isomap 56.5 (±0.7) 49.4 (±3.8)
Laplacian Eigenmaps 35.8 (±5.0) 69.2 (±10.8)

Table 6.4: K-means clustering of face poses applied to PIE-10K for different
algorithms. Results are averaged over 10 random K-means initializations.

Methods Purity (%) Accuracy (%)
PCA 54.6 (±1.3) 46.8 (±1.3)

Nyström Isomap 59.9 (±1.5) 53.7 (±4.4)
Col-Sampling Isomap 56.1 (±1.0) 50.7 (±3.3)
Laplacian Eigenmaps 39.3 (±4.9) 74.7 (±5.1)

Table 6.5: K-means clustering of face poses applied to PIE-35K for different
algorithms. Results are averaged over 10 random K-means initializations.

inputs as nearby as possible in the low-dimensional space. When used for clus-
tering, these compact embeddings lead to a few large clusters and several tiny
clusters, thus explaining the high accuracy and low purity of the clusters. This
indicates poor clustering performance of Laplacian Eigenmaps, since one can
achieve even 100% Accuracy simply by grouping all points into a single cluster.
However, the Purity of such clustering would be very low. Finally, the improved
clustering results of Isomap over PCA for both datasets verify that the manifold
of faces is not linear in the input space.

Moreover, we compared the performance of Laplacian Eigenmaps and Isomap
embeddings on pose classification.11 The data was randomly split into a train-
ing and a test set, and K-Nearest Neighbor (KNN) was used for classification.
K = 1 gives lower error than higher K as shown in Table 6.6. Also, the classifi-
cation error is lower for both exact and approximate Isomap than for Laplacian
Eigenmaps, suggesting that neighborhood information is better preserved by
Isomap (Tables 6.6 and 6.7). Note that, similar to clustering, the Nyström ap-
proximation performs as well as Exact Isomap (Table 6.6). Better clustering and
classification results, combined with 2D visualizations, imply that approximate
Isomap outperforms exact Laplacian Eigenmaps. Moreover, the Nyström ap-
proximation is computationally cheaper and empirically more effective than the
Column sampling approximation. Thus, we used Nyström Isomap to generate
embeddings for Webfaces-18M.

After learning a face manifold from Webfaces-18M, we analyzed the results
with various visualizations. The top row of Figure 6.9 shows the 2D embeddings

11KNN only uses nearest neighbor information for classification. Since neighborhoods are
considered to be locally linear in the input space, we expect KNN to perform well in the
input space. Hence, using KNN to compare low-level embeddings indirectly measures how
well nearest neighbor information is preserved.
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(a) (b)

(c) (d)

Figure 6.8: Optimal 2D projections of PIE-35K where each point is color coded
according to its pose label. (a) PCA projections tend to spread the data to
capture maximum variance. (b) Isomap projections with Nyström approxima-
tion tend to separate the clusters of different poses while keeping the cluster
of each pose compact. (c) Isomap projections with Column sampling approx-
imation have more overlap than with Nyström approximation. (d) Laplacian
Eigenmaps projects the data into a very compact range.

Methods K = 1 K = 3 K = 5
Isomap 10.9 (±0.5) 14.1 (±0.7) 15.8 (±0.3)

Nyström Isomap 11.0 (±0.5) 14.0 (±0.6) 15.8 (±0.6)
Col-Sampling Isomap 12.0 (±0.4) 15.3 (±0.6) 16.6 (±0.5)
Laplacian Eigenmaps 12.7 (±0.7) 16.6 (±0.5) 18.9 (±0.9)

Table 6.6: K-nearest neighbor face pose classification error (%) on PIE-10K
subset for different algorithms. Results are averaged over 10 random splits of
training and test sets. K = 1 gives the lowest error.
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Nyström Isomap Col-Sampling Isomap Laplacian Eigenmaps
9.8 (±0.2) 10.3 (±0.3) 11.1 (±0.3)

Table 6.7: 1-nearest neighbor face pose classification error (%) on PIE-35K for
different algorithms. Results are averaged over 10 random splits of training and
test sets.

(a) (b)

(c)

Figure 6.9: 2D embedding of Webfaces-18M using Nyström Isomap (Top row).
Darker areas indicate denser manifold regions. (a) Face samples at different
locations on the manifold. (b) Approximate geodesic paths between celebrities.
(c) Visualization of paths shown in (b).
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from Nyström Isomap. The top left figure shows the face samples from various
locations in the manifold. It is interesting to see that embeddings tend to
cluster the faces by pose. These results support the good clustering performance
observed using Isomap on PIE data. Also, two groups (bottom left and top
right) with similar poses but different illuminations are projected at different
locations. Additionally, since 2D projections are very condensed for 18M points,
one can expect more discrimination for higher k, e.g., k = 100.

In Figure 6.9, the top right figure shows the shortest paths on the manifold
between different public figures. The images along the corresponding paths have
smooth transitions as shown in the bottom of the figure. In the limit of infinite
samples, Isomap guarantees that the distance along the shortest path between
any pair of points will be preserved as Euclidean distance in the embedded space.
Even though the paths in the figure are reasonable approximations of straight
lines in the embedded space, these results suggest that either (i) 18M faces are
perhaps not enough samples to learn the face manifold exactly, or (ii) a low-
dimensional manifold of faces may not actually exist (perhaps the data clusters
into multiple low dimensional manifolds). It remains an open question as to
how we can measure and evaluate these hypotheses, since even very large-scale
testing has not provided conclusive evidence.

6.5 Summary

We have presented large-scale nonlinear dimensionality reduction using unsu-
pervised manifold learning. In order to work on a such a large-scale, we first
studied sampling based algorithms, presenting an analysis of two techniques for
approximating SVD on large dense SPSD matrices and providing a theoretical
and empirical comparison. Although the Column sampling method generates
more accurate singular values and singular vectors, the Nyström method con-
structs better low-rank approximations, which are of great practical interest as
they do not use the full matrix. Furthermore, our large-scale manifold learn-
ing studies reveal that Isomap coupled with the Nyström approximation can
effectively extract low-dimensional structure from datasets containing millions
of images. Nonetheless, the existence of an underlying manifold of faces remains
an open question.

6.6 Bibliography and historical remarks

Manifold learning algorithms are extensions of classical linear dimensionality
reduction techniques introduced over a century ago, e.g., Principal Component
Analysis (PCA) and Classical Multidimensional Scaling (Pearson, 1901; Cox
et al., 2000). Pioneering work on non-linear dimensionality reduction was in-
troduced by Tenenbaum et al. (2000); Roweis and Saul (2000), which led to
the development of several related algorithms for manifold learning (Belkin &
Niyogi, 2001; Donoho & Grimes, 2003; Weinberger & Saul, 2006). The connec-
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tion between manifold learning algorithms and Kernel PCA was noted by Ham
et al. (2004). The Nyström method was initially introduced as a quadrature
method for numerical integration, used to approximate eigenfunction solutions
(Nyström, 1928; Baker, 1977). More recently it has been studied for a vari-
ety of kernel-based algorithms and other algorithms involving symmetric posi-
tive semidefinite matrices (Williams & Seeger, 2000; Fine & Scheinberg, 2002;
Fowlkes et al., 2004; Drineas & Mahoney, 2005; Karsmakers et al., 2007; Zhang
et al., 2008; Kumar et al., 2009b; Cortes et al., 2010), and in particular for
large-scale manifold learning (de Silva & Tenenbaum, 2003; Platt, 2004; Tal-
walkar et al., 2008). Column sampling techniques have also been analyzed for
approximating general rectangular matrices, including notable work by Frieze
et al. (1998); Drineas et al. (2006); Deshpande et al. (2006). Initial compar-
isons between the Nyström method and these more general Column sampling
methods were first discussed in Talwalkar et al. (2008); Kumar et al. (2009a).
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