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Abstract

This paper presents a generative model based approach
to man-made structure detection in 2D natural images. The
proposed approach uses a causal multiscale random field
suggested in [3] as a prior model on the class labels on the
image sites. However, instead of assuming the conditional
independence of the observed data, we propose to capture
the local dependencies in the data using a multiscale feature
vector. The distribution of the multiscale feature vectors is
modeled as mixture of Gaussians. A set of robust multi-
scale features is presented that captures the general statis-
tical properties of man-made structures at multiple scales
without relying on explicit edge detection. The proposed ap-
proach was validated on real-world images from the Corel
data set, and a performance comparison with other tech-
niques is presented.

1. Introduction

Automatic detection of man-made structure in ground-
level images is useful for scene understanding, robotic nav-
igation, surveillance, image indexing and retrieval etc. This
paper focuses on the detection of man-made structures,
which can be characterized primarily by the presence of lin-
ear structures. The detection of such a constrained set of
man-made structures from a single static ground-level im-
age is still a non-trivial problem due to three main reasons.
First, the realistic views of a structured object captured from
a ground-level camera are unconstrained unlike the aerial
views, which complicates the use of predefined models or
model-specific properties in detection. Second, no motion
or stereo information is available, precluding the use of ge-
ometrical information pertaining to the structure. Finally,
the images of natural scenes contain large amount of clut-
ter, and the edge extraction is very noisy. This makes the
computation of the image primitives such as junctions, an-
gles etc., which rely on explicit edge or line detection, prone
to errors.

Buildings are one possible instance of man-made struc-
tures and some of the related work on structure detection
exists for buildings [13][12][9][7][4]. A majority of the
techniques for building detection from aerial imagery try to
generate a hypothesis on the presence of building roof-tops
in the scene [13]. This is usually attained by first detecting
low-level image primitives, e.g. edges, lines or junctions,
and then grouping these primitives using either geometric-
model based heuristics [12], or a statistical model, e.g.
Markov Random Field (MRF) [9]. For the ground-level im-
ages, the detection of roof-tops is not feasible and shadows
do not constrain the detection problem unlike the aerial im-
ages.

Perceptual Organization based building detection has
been presented in [7] for image retrieval. In [17] a technique
was proposed to learn the parameters of a large perceptual
organization using graph spectral partitioning. However,
these techniques also require the low-level image primitives
to be computed explicitly, and to be relatively noise-free.
There has been some recent research work regarding the
classification of a whole image as a landscape or an ur-
ban scene [14][18]. Oliva and Torralba [14] obtain a low-
dimensional holistic representation of the scene using prin-
cipal components of the power spectra. We found the power
spectra based features to be noisy for our images, which
contain a mixture of both the landscape and man-made re-
gions within the same image. It might be due to the fact that
a ’single’ image (or a region contained in it) may not follow
the assumption that the power spectra falls with a form f−α

where f is spatial frequency [10]. Vailaya et al. [18] use
the edge coherence histograms over the whole image for
the scene classification, using edge pixels at different ori-
entations. Olmos and Trucco [15] have recently proposed a
system to detect the presence of man-made objects in under-
water images using properties of the contours in the image.
The techniques which classify the whole image in a certain
class implicitly assume the image to be exclusively contain-
ing either man-made or natural objects, which is not true for
many real-world images.

The techniques described in [5][8] perform classifica-



(a) Input image (b) Edge image

Figure 1. A natural image and the corresponding edge

image obtained using Canny edge detector to illustrate

that reliable extraction of low-level image primitives, e.g.
lines, edges or junctions for man-made structure detec-

tion is hard in natural images.

tion in outdoor images using color and texture features, but
employ different classification schemes. These papers re-
port poor performance on the classes containing man-made
structures since color and texture features are not very in-
formative for these classes [18]. In addition, in comparison
to the Sowerby database used by them, we use a more di-
verse set of images from the Corel database for training as
well as testing.

In this paper, we propose to detect man-made structures
in a 2D image, located at medium to long distances from the
camera. To visualize the problems with low-level primitives
using edges, an input image and the corresponding edge im-
age obtained from the Canny edge detector are shown in
Figure 1. It is clear that detection based on these primitives
is going to be a daunting task for this type of images. In-
stead, in the present work we propose a hybrid approach
which uses the bottom-up approach of extracting generic
features from the image blocks, followed by the top-down
approach of classifying image blocks based on statistical
distribution of the features learned from the training data.

2. Image Generative Model

Given an input image, the detection problem can be
posed as a classification problem where each site (a block or
a pixel) in the image is classified into the structured class or
the nonstructured class. Let y be the observed data associ-
ated with the input image, where y = {ym}Mm=1, ym be the
data from mth site. Let the corresponding labels at the im-

age sites be given by xN =
{
xNm
}M
m=1

, where xNm ∈ {0, 1}.
In the Bayesian framework, given y, we are interested in

finding the predictive posterior over the labels xN , which
can be written as P (xN |y) ∝ P (y|xN )P (xN ). Here
P (y|xN ) is the observation (or likelihood) model and
P (xN ) is the prior model on the labels. For vision appli-
cations, MRF has been a popular choice for modeling the
prior over the labels. However, there are several disadvan-
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(a) Proposed model (b) Approximated model

Figure 2. A 1-D representation of the quad-tree structured

MSRF based image generative model. See text for more.

tages of using the MRF models [3]. In the standard MRF
formulation, computation of exact Maximum a Posteriori
(MAP) or Modes of Posterior Marginal (MPM) estimates is
in general NP-hard, and the approximate estimates are ex-
pensive to compute. The parameter estimation in MRF is
difficult due to the presence of the partition function. To al-
leviate these problems, in the present work we use a causal
Multiscale Random Field (MSRF) as a prior model as pro-
posed by Bouman and Shapiro [3] and further used by [5]
for semantic image segmentation.

In a MSRF model, labels over an image are generated us-
ing Markov chains defined over coarse to fine scales. Such
a hierarchical structure is also known as Tree-Structured
Belief Network (TSBN) [5]. It can facilitate easy incor-
poration of long-range correlations in the image. We use
the standard singly-connected quad-tree representation of
MSRF to model the prior distribution over labels. One big
advantage of such MSRF models is that the MAP/MPM
inference is noniterative and time complexity is linear in
the number of image sites. However, these models suffer
from the nonstationarity of the induced random field, lead-
ing to ’blocky’ smoothing of the image labels [5]. Accord-
ing to the overall image generative model, the image data
y is generated from an underlying process x, where x is
a MSRF. For simplicity, a 1-D representation of the overall
image generative model is given in figure 2 (a). The labels at
N levels of the causal tree are denoted by x1,x2, . . . ,xN

with P (x) = P (x1,x2, . . . ,xN ). It can be noted that the
observed image labels are nodes of the layer xN . In the
MSRF model, the Markov assumption over scales implies
P (xn|x1, . . . ,xn−1) = P (xn|xn−1) for n = 2, . . . , N .
Further, from the conditional independence assumption for
the directed graphs, P (xn|xn−1) =

∏
i∈Sn P (xni |zn−1

i ),
where xni is ith node at level n, zn−1

i is its parent at level
(n − 1), and Sn is the set containing all the nodes at level
n. Each node in the MSRF model is a bernoulli variable in
our case.

For the observation model, it is generally assumed that
the data is conditionally independent given the class labels



[5][3]. However, this assumption is not correct for man-
made structures, since the neighboring sites containing a
man-made structure exhibit strong dependencies. In other
words, the lines and edges at such spatially adjoining sites
follow some underlying organization rules rather than be-
ing random. In this work, instead, we assume that given the
class label xNm at site m, the data ym is dependent only on
its neighbors. This imposes a MRF-like noncausal depen-
dency among the data y, which is shown by undirected links
in Figure 2 (a). Thus, the generative model has two random
fields, one on the labels, and the other on the data given
the labels. Hierarchical MRFs have been used to perform
texture segmentation by defining separate MRFs over the
texture labels and the data given the labels [19]. To avoid
dealing with intractable true joint conditional P (y|xN ), we
assume a factored form of the observation model similar to
[19] such that,

P (y|xN ) ≈
∏

m∈SN
P (ym|yωm , xNm) (1)

where ωm is the neighborhood set of site m, and yωm =
{ym′ |m′ ∈ ωm}. The above approximation is known as
Pseudo Likelihood (PL) in the MRF literature [11]. Thus,
the overall generative model of the image can be expressed
as,

P (x,y)=P (x1)
∏

i∈S
P (xi|zi)

∏

m∈SN
P (ym|yωm , xNm) (2)

where S is the set containing all the nodes in the tree x
except the root node x1, and zi is the parent of node xi. To
simplify the notations, we have denoted a generic node at
any level of the tree by xi, and its parent by zi.

We further assume the field over the data y to be homo-
geneous, and approximate the conditional P (ym|yωm , xNm)
by p(fm|xNm), where fm is a multiscale feature vector
which encodes the dependencies of data at site m given its
neighbors. This approximation is driven by the fact that the
conditional distribution P (ym|yωm , xNm) has a very limited
power of structure description because it is about the datum
on a single site m given the neighborhood [19]. In [19],
the authors used the distribution of the data contained in
the neighborhood of site m to approximate the conditional
distribution in the context of texture segmentation. For our
application, this issue becomes even more important as we
need a rich representation of the data for man-made struc-
ture detection, which is inherently contained over multiple
scales. Generic texture features have been shown to be in-
adequate due to wide variations in the appearance of man-
made structures [8]. The need for rich data representation
becomes crucial in the case of limited training data. The
idea of multiscale feature vector is similar to the concept
of parent vector defined by De Bonet [2], with the distinc-
tion that we compute features at a particular site by varying

the size of the window around it so that the dependencies
on the neighbors could be encoded explicitly. This kind of
scale is also known as integration or artificial scale in the
vision literature. Using the above assumptions, we can now
approximate the overall image generative model as given
in Figure 2 (b). Note that the original observation layer y
has been replaced by a multiscale observation layer f . The
topology of the approximated generative model is similar to
the one used in [3], and the benefits of that model in terms
of exact noniterative inference can now be reaped.

Finally, exploiting the assumption of homogeneity, the
likelihood of the multiscale feature vector was modeled
using a Gaussian Mixture Model (GMM) for each class,
as P (fm|xNm) =

∑Γ
γ=1 P (fm|xNm, γ)P (γ|xNm), where

P (fm|xNm, γ) ∼ N (µγ ,Σγ), µγ is the mean and Σγ is the
covariance of the γth Gaussian, and Γ is the total number of
Gaussians in GMM.

2.1. Parameter Estimation

The full image generative model has two different sets
of parameters: Θp in the prior model, and Θo in the obser-
vation model. The observation model parameters consist of
mean and covariance matrices of the Gaussians, which are
estimated through standard maximum likelihood formula-
tion for GMM using Expectation Maximization (EM). The
prior model parameter set consists of conditional transition
probabilities over different links in the tree, and the prior
probabilities over the root node. Let θikl be the transition
probability for node i∈S, defined as, θikl =P (xi = l|zi =
k), with the constraint

∑
l θikl = 1, where k, l ∈ {0, 1}.

It simply defines the conditional distribution at ith node in
MSRF given the label of its parent in the previous layer. The
prior model parameters were learned using the Maximum
Likelihood (ML) approach [5] by maximizing the probabil-
ity of the labeled training images as,

Θ̂ML
p = arg max

Θp

T∏

t=1

P (xNt,yt|Θp,Θo)

where t indexes over the training images, and T is the
total number of training images. Assuming the observa-
tion model to be fixed, the ML estimate of Θp is sim-
ply obtained using the labeled images xNt as, Θ̂ML

p =

arg maxΘp

∏T
t=1 P (xNt|Θp). This maximization is carried

out using EM, where all the nodes of MSRF from root to
level (N − 1) are interpreted as the hidden variables. De-
noting the hidden variables by xh = {x\xN}, in the E-step
the lower bound is computed for the likelihood function at
the current estimate of the parameters Θ′p as the following
expectation:

Q(Θp,Θ
′
p) =

T∑

t=1

Exth|Θ′p
[
logP (xth,x

Nt|Θp)
]



Computing the lower bound simply amounts to estimating
the posterior probabilities over each parent-child pair,

P (xti= l, zti =k|xNt,Θ′p) =

λ(xti= l) θ′ikl π(zti =k)∑
k′ π(zti =k′)λ(zti =k′)

∏

u∈U(xti)

λu(zti =k) (3)

where U(xi) is the set containing all the siblings of xi,
λ(xi) is the λ-value at node xi, π(zi) is the π-value at node
zi, and λu(zi) is the λ-message sent from node u to zi. All
these notations are the same as defined in [16] in the con-
text of belief propagation on singly-connected causal trees.
In the M-step, new parameter values are obtained by maxi-
mizing the bound. In the case of limited training data, com-
puting a different θikl for each link is not practical. Thus,
all the θikl at each level nwere forced to be the same as sug-
gested in [5], and denoted as θnkl. Maximizing the bound
defined above, subject to the constraint

∑
lθnkl=1 yields

for level n,

θnkl=

∑T
t=1

∑
xi∈Sn P (xti= l, zti =k|xNt,Θ′p)∑T

t=1

∑
xi∈Sn

∑
l′ P (xti= l′, zti =k|xNt,Θ′p)

(4)

The prior probabilities over the root node are simply
given by the belief at that node obtained through λ-π mes-
sage passing scheme of Pearl [16].

2.2. Inference

Given a new test image y, the aim is to find the opti-
mal class labels over the image sites where the optimal-
ity is evaluated with respect to a particular cost function.
The MAP estimate can be excessively conservative since
it maximizes the probability that all the sites in the im-
age are correctly classified [3]. In the present work, the
labels are obtained through Maximum Posterior Marginals
(MPM) such that the optimal labels maximize P (xNm|f) for
m = 1, · · · ,M . This can be achieved noniteratively by
computing the belief at each node of the tree at level N us-
ing Pearl’s λ-π message passing scheme [16] in one upward
and one downward pass over the tree.

To summarize, we have proposed MSRF based image
generative model that takes into account the spatial depen-
dencies of not only the class labels but also the observed
data. After making some common approximations, learn-
ing of the model parameters and inference over the model
can be carried out using efficient techniques.

3. Feature Set Description

The choice of appropriate features without relying on ad
hoc heuristics is important for a generic structure detection
system. On the other hand, given a small training set, task

dependent feature extraction becomes unavoidable to effi-
ciently encode the relevant task information in a limited
number of features. There is currently no formal solution
to deriving optimal task-dependent features. In this sec-
tion, we propose a set of multiscale features that captures
the general statistical properties of the man-made structures
over spatially adjoining sites.

For each site in the image, we compute the features at
multiple scales, which capture intrascale as well as inter-
scale dependencies. The multiscale feature vector at site m
is then given as: fm =

[
{f jm}Jj=1, {fρm}Rρ=1

]
where, f jm is

jth intrascale feature and fρm is ρth interscale feature.

3.1. Intrascale Features

As mentioned earlier, here we focus on those man-made
structures which are primarily characterized by straight
lines and edges. To capture these characteristics, at first, the
input image is convolved with the derivative of Gaussian fil-
ters to yield the gradient magnitude and orientation at each
pixel. Then, for an image site m, the gradients contained
in a window Wc at scale c (c = 1, . . . , C) are combined
to yield a histogram over gradient orientations. However,
instead of incrementing the counts in the histogram, we
weight each count by the gradient magnitude at that pixel
as in [1]. It should be noted that the weighted histogram is
made using the raw gradient information at every pixel in
Wc without any thresholding. Let Eδ be the magnitude of
the histogram at the δth bin, and ∆ be the total number of
bins in the histogram. To alleviate the problem of hard bin-
ning of the data, we smoothed the histogram using kernel
smoothing. The smoothed histogram is given as,

E′δ =

∑∆
i=1K((δ − i)/h)Ei∑∆
i=1K((δ − i)/h)

(5)

where K is a kernel function with bandwidth h. The ker-
nel K is generally chosen to be a non-negative, symmetric
function.

If the window Wc contains a smooth patch, the gradients
will be very small and the mean magnitude of the histogram
over all the bins will also be small. On the other hand, ifWc

contains a textured region, the histogram will have approx-
imately uniformly distributed bin magnitudes. Finally, if
Wc contains a few straight lines and/or edges embedded in
smooth background, as is the case for the structured class,
a few bins will have significant peaks in the histogram in
comparison to the other bins. Let ν0 be the mean magnitude
of the histogram such that ν0 = 1

∆

∑∆
δ=1E

′
δ . We aim to

capture the average ’spikeness’, of the smoothed histogram
as an indicator of the ’structuredness’ of the patch. For this,
we propose heaved central-shift moments for which pth or-



der moment νp is given as,

νp =

∑∆
δ=1(E′δ − ν0)p+1H(E′δ − ν0)
∑∆
δ=1(E′δ − ν0)H(E′δ − ν0)

(6)

where H(x) is the unit step function such that H(x) = 1
for x > 0, and 0, otherwise. The moment computation in
Eq. (6) considers the contribution only from the bins hav-
ing magnitude above the mean ν0. Further, each bin value
above the mean is linearly weighted by its distance from the
mean so that the peaks far away from the mean contribute
more. The moments ν0 and νp at each scale c form the gra-
dient magnitude based intrascale features in the multiscale
feature vector.

Since the lines and edges belonging to the structured
regions generally either exhibit parallelism or combine to
yield different junctions, the relation between the peaks
of the histograms must contain useful information. The
peaks of the histogram are obtained simply by finding the
local maxima of the smoothed histogram. Let δ1 and δ2

be the ordered orientations corresponding to the two high-
est peaks such that E′δ1 ≥ E′δ2 . Then, the orientation
based intrascale feature βc for each scale c is computed as
βc = | sin(δ1 − δ2)|. This measure favors the presence of
near right-angle junctions. The sinusoidal nonlinearity was
preferred to the Gaussian function because sinusoids have
much slower fall-off rate from the mean. The sinusoids
have been used earlier in the context of perceptual grouping
of prespecified image primitives [9]. We used only the first
two peaks in the current work but one can compute more
such features using the remaining peaks of the histogram.
In addition to the relative locations of the peaks, the abso-
lute location of the first peak from each scale was also used
to capture the predominance of the vertical features in the
images taken from upright cameras.

3.2. Interscale features

We used only orientation based features as the interscale
features. Let {δc1, δc2, . . . , δcP } be the ordered set of peaks
in the histogram at scale c, where the set elements are or-
dered in the descending order of their corresponding mag-
nitudes. The features between scales i and j, βijp were com-
puted by comparing the pth corresponding peaks of their
respective histograms, i.e. βijp = | cos 2(δip − δjp)|, where
i, j = 1, . . . , C. This measure favors either a continuing
edge/line or near right-angle junctions at multiple scales.

4. Experimental Results

The proposed detection scheme was trained and tested
on two different datasets drawn randomly from the Corel
Photo Stock. The training set consisted of 108 images while
the testing set contained 129 images, each of size 256×384

pixels. Most of the images in both the datasets contained
both natural objects and man-made structures captured at
medium to long distances from a ground-level camera. The
ground truth was generated by hand-labeling each nonover-
lapping 16×16 pixels block in each image as a structured
or nonstructured block. This kind of coarse labeling was
sufficient for our purpose as we were interested in finding
the location of the structured blocks without explicitly de-
lineating the object boundary. However, the block quanti-
zation introduces noise in the labels of the blocks lying on
the object boundary, since a block containing a small part of
the structure could be given either of the labels. This makes
the quantitative evaluation of the results hard and there is no
formal solution to this problem. To circumvent this, we do
not count as false positive a misclassification that is adjacent
to a block with ground truth label structured. In practice,
small classification variations at the object boundary do not
affect future processing such as grouping blocks into con-
nected regions or extracting bounding boxes. The whole
training set contained 36, 269 blocks from the nonstruc-
tured class, and 3, 004 blocks from the structured class.

To train the generative model, a multiscale feature vector
was computed for each nonoverlapping 16×16 pixels block
in the training images. One of the reasons for choosing this
block size is related to the fundamental ambiguity in the
structure detection task. If the structure is too far, it will be-
come like ’texture’, and if it is too near, only a small portion
(e.g., a long edge or a smooth patch from a wall) will occupy
almost the whole image. The lowest and the highest scales
for the feature extraction were chosen to constrain this am-
biguity. We are interested in the structures which are not
smaller than the lowest scale, and are not totally smooth or
contain only unidirectional edges at the highest scale. For
multiscale feature computation, the number of scales was
chosen to be 3, with the scales changing in regular octaves.
The lowest scale was fixed at 16×16 pixels, and the highest
scale at 64×64 pixels. The largest scale implicitly defines
the neighborhood ωm defined in Eq. (1) over which the data
dependencies are captured.

For each image block, a Gaussian smoothing kernel was
used to smooth the weighted orientation histogram at each
scale. The bandwidth of the kernel was chosen to be 0.7
to restrict the smoothing to two neighboring bins on each
side. The moment features for orders p≥ 1 were found to
be correlated at all the scales. Thus, we chose only two mo-
ment features, ν0 and ν2 at each scale. This yielded twelve
intrascale features from the three scales including one ori-
entation based feature for each scale. For the interscale fea-
tures, we used only the highest peaks of the histograms at
each scale, yielding two features. Hence, for each image
block m, a fourteen component multiscale feature vector
fm was obtained. We used only a limited number of fea-
tures due to the lack of sufficient training data to reliably



(a) (b) (c) (d) (e)

Figure 3. The learned parameters for the 2-class, 5-level

MSRF model. The brighter intensity indicates a higher

probability. (a) Prior probabilities at the root node (right

block indicates the structured class), (b) through (e) tran-

sition probability matrices for the links between adjacent

levels starting from level 1 to level 5 (top left block indi-

cates the transition from structured to structured class).

estimate the GMM parameters. Each feature was normal-
ized linearly over the training set between zero and one for
numerical reasons.

To learn the parameters of the MSRF model (Θp), a
quad-tree was constructed considering each 16×16 pixels
nonoverlapping block in the image to be a node at the leaf
level N . This arrangement resulted in 16×24 nodes at the
leaf level and five levels (N = 5) in the tree. To take into
account the 2 : 3 aspect ratio of the images, we modified
the quad-tree as suggested in [5] such that the root node
had six children. Since we had assumed the conditional
transition probability to be the same for each link within a
level, we needed to estimate four transition probability ma-
trices, θnkl, and the prior probability distribution over the
root node. For the ML learning described in section 2.1, the
parameter values were initialized by building the empirical
trees over the image labels in the training images using the
max-voting over the nodes. The training took 8 iterations
to converge in 773 s in Matlab 6.5 on a 1.5 GHz Pentium
class machine. The learned parameters are shown in Figure
3. The brighter intensity indicates a higher probability. It
can be noted that for finer levels, the diagonal probabilities
are dominant indicating high probabilities of transition to
the same class. The transition matrix between level 1 and
level 2 shows a more random transition due to the mixing
of blocks at coarser levels. Finally, the prior probability dis-
tribution at the root node highly favors the root node to be
from the nonstructured class. This is reasonable since most
of the images have much lesser structured blocks compared
to the nonstructured blocks. For the GMM based observa-
tion model, the number of Gaussians in the mixture model
was selected to be 8 using cross-validation. The mean vec-
tors, full covariance matrices and the mixing parameters
were learned using the standard EM technique.

4.1. Performance Evaluation

In this section we present a qualitative as well as quan-
titative evaluation of the proposed detection scheme. First

Figure 4. The structure detection results for the input

image given in Figure 1 (a). Top: Maximum likelihood re-

sults using only GMM. Middle: MPM results using MSRF

model. Bottom: The MSRF posterior map displaying the

posterior marginals over the image blocks for the struc-
tured class. The brighter intensity indicates a higher

probability.

(a) (b)

Figure 5. The structure detection results using (a) SC,

(b) SVM. Both techniques have higher number of false

positives in comparison to the MSRF result for a similar

detection rate.
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Figure 6. Confusion matrices for different techniques. S

- structured, and NS - nonstructured. The detection rate

was kept nearly the same for all the techniques. The rows

contain the ground truth while the columns contain the

detection results.

we compare the detection results on the test images using
two different methods: only GMM (i.e. no prior model
over the labels) with maximum likelihood inference, and
GMM in addition to MSRF prior with MPM inference. For
convenience, the former will be referred to as the GMM
and the latter as the MSRF model in the rest of the paper.
The same set of learned parameters was used in GMM for
both the methods. For the input image given in Figure 1
(a), the structure detection results from the two methods are
given in Figure 4. The blocks identified as structured have
been shown enclosed within an artificial boundary. It can be
noted that for the same detection rate, the number of false
positives have significantly reduced for the MSRF based de-
tection. The MSRF model tends to smooth the labels in the
image and removes most of the isolated false positives. The
bottom image in Figure 4 shows the MSRF posterior map
over the input image for the structured class, displaying the
posterior marginals for each image block. The posterior
map exhibits high probability for the structured blocks, and
the number of nonstructured blocks with significant prob-
ability is very low. This shows that the MSRF based tech-
nique is making fairly confident predictions.

We compare the above results with the results from
two other popular classification techniques: Support Vec-
tor Machine (SVM) and Sparse Classifier (SC). A Bayesian
learning of sparse classifiers was proposed recently by
Figueiredo and Jain [6], who have shown good results on the
standard machine learning databases. Both classifiers used
the multiscale feature vectors defined earlier as the data as-
sociated with the image blocks. We implemented a kernel
classifier using a symmetric Gaussian kernel of bandwidth
0.1 for both SVM and SC. The cost parameter for SVM was
set to be 1000 from cross-validation. The number of support
vectors in SVM were found to be 2305, while the number
of sparse relevance vectors in SC were 66. The detection
results for these two techniques are shown in Figure 5. The
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Figure 7. ROC curves for MSRF, GMM, and SC techniques

results from SC were based on the MAP inference. It can
be seen that the detection rate in the image is fairly good for
both the techniques. This demonstrates that the multiscale
features capture relevant data dependencies for the structure
detection. However, the number of false positives for both
techniques is significantly higher than that from the MSRF
model. Similar to the GMM , SVM and SC do not enforce
the smoothness in the labels, which led to increased false
positives. The average time taken in processing an image of
size 256×384 pixels in Matlab 6.5 on a 1.5 GHz Pentium
class machine was 2.8 s for MSRF, 2.3 s for GMM, 2.3 s for
SC, and 2.8 s for SVM.

To carry out the quantitative evaluation of our work, we
first computed the block wise classification accuracy over
all the test images. We obtained 94.6% classification ac-
curacy for the 49, 536 blocks contained in 129 test images.
However, the classification accuracy is not a very informa-
tive criterion here as the number of nonstructured blocks
(43, 164) is much higher than the number of structured
blocks (6, 372), and a high classification accuracy can be
obtained even by classifying every block to the nonstruc-
tured class. Hence, we computed two-class confusion ma-
trices for each technique. The confusion matrix for the
MSRF model is given in Figure 6 (a). For an overall de-
tection rate of 72.13%, the false positive rate was 0.43% or
1.46 false positives per image. The main reason for a rela-
tively low detection rate is that the algorithm fails to detect
the structured blocks that are part of the smooth roofs or
walls that have no significant gradients even at larger scales.
In fact, it is almost impossible to differentiate these blocks
from the smooth blocks contained in natural regions (e.g.
sky, land) using any technique without exploiting other aux-
iliary information such as color. Similarly, too small struc-
tures and bad illumination contrast in natural images also
make the detection hard. However, it should be noted that
this is a significant detection rate at the block level given a
low false positive rate. In general we do not require all the



blocks of an structured object to be detected since one could
use other postprocessing techniques such as color based
region-growing to detect the missing blocks of an object.

Keeping the same detection rate as from the MSRF
model, we obtain confusion matrices for the GMM and
SC. Since SVM does not output probabilities, we varied the
cost parameter to obtain the closest possible detection rate.
The confusion matrices are given in Figure 6. The aver-
age false positives per image for the GMM, SC and SVM
are 2.89, 4.47, and 4.88 respectively. The best among these
three gives almost twice false positives per image in com-
parison to the MSRF model. The results from SVM and
SC are quite similar with SC having a slight advantage,
since the SVM detection rate is 68.55% in comparison to
72.13% of SC for comparable false positives. For a more
complete comparison of the detection performance of the
MSRF, GMM, and SC techniques, the corresponding ROC
curves are shown in Figure 7. The MSRF model performs
better than the other two techniques. The GMM performs
better than the SC most of the times for our test set. For
the regions of low false positive per image (less than 2), the
performance of MSRF model is significantly better than the
other two techniques.

5. Conclusions

We have presented a technique for man-made structure
detection in natural images using a causal MSRF. The pro-
posed generative model captures spatial dependencies of the
labels as well as the observed data to yield good results in
real-world images. The empirical results support the ef-
fectiveness of the proposed multiscale features in capturing
neighborhood relationships of the structured objects. How-
ever, the price to pay for using a multiscale representation
is somewhat degraded localization at the object boundaries.
In the future, it will be interesting to explore more powerful
models to capture the dependencies in the data by relaxing
some of the statistical assumptions made in this paper, and
their relation with the prior model over the labels. Finally,
beyond the task of structure detection used as a basis of dis-
cussion in this paper, the proposed model may potentially
be used in many vision tasks in which spatial consistency
of class labels as well as the observed data needs to be en-
forced. Such tasks include object detection, image segmen-
tation, and domain specific image analysis.
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