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Abstract

Fast approximate nearest neighbor (NN)
search in large databases is becoming popular
and several powerful learning-based formula-
tions have been proposed recently. However,
not much attention has been paid to a more
fundamental question: how difficult is (ap-
proximate) nearest neighbor search in a given
data set? And which data properties affect
the difficulty of nearest neighbor search and
how? This paper introduces the first concrete
measure called Relative Contrast that can
be used to evaluate the influence of several
crucial data characteristics such as dimen-
sionality, sparsity, and database size simul-
taneously in arbitrary normed metric spaces.
Moreover, we present a theoretical analysis to
show how relative contrast affects the com-
plexity of Local Sensitive Hashing, a popu-
lar approximate NN search method. Rela-
tive contrast also provides an explanation for
a family of heuristic hashing algorithms with
good practical performance based on PCA.
Finally, we show that most of the previous
works measuring meaningfulness or difficulty
of NN search can be derived as special asymp-
totic cases for dense vectors of the proposed
measure.

1. Introduction

Finding nearest neighbors is a key step in many ma-
chine learning algorithms such as spectral cluster-
ing, manifold learning and semi-supervised learning.
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Rapidly increasing data in many domains such as the
Web is posing new challenges on how to efficiently
retrieve nearest neighbors of a query from massive
databases. Fortunately, in most applications, it is suf-
ficient to return approximate nearest neighbors of a
query, which allows efficient scalable search.

A large number of approximate Nearest Neighbor
(NN) search techniques have been proposed in the
last decade including hashing and tree-based methods,
to name a few, (Datar et al., 2004; Liu et al., 2004;
Weiss et al., 2008). However, the performance of all
these techniques depends heavily on the data set char-
acteristics. In fact, as a fundamental question, one
would like to know how difficult is (approximate) NN
search in a given data set. And, more broadly, which
dataset characteristics affect the search difficulty and
how? The term ’difficulty’ here has two different
but related meanings. In the context of NN search
(independent of indexing methods), difficulty implies
’meaningfulness’, i.e., for a query, how differentiable
is its nearest neighbor compared to the other points?
In the context of approximate NN search methods like
tree or hashing based indexing methods, difficulty im-
plies ’complexity’, i.e., what is the time and space com-
plexity to find the nearest neighbor (with a high prob-
ability)? These questions have not been paid much
attention in the literature.

In terms of meaningfulness of NN search in a given
dataset, most of the existing works have focused only
on the effect of data dimensionality, that too in an
asymptotic sense. They have shown that under some
conditions NN search becomes meaningless when the
number of dimensions goes to infinity (Beyer et al.,
1999; Aggarwal et al., 2001; Francois et al., 2007).
First, non-asymptotic analysis has not been discussed,
i.e., when the number of dimensions is finite. More-
over, the effect of other crucial properties has not
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been studied, for instance, the sparsity of data vectors.
Since in many applications, high-dimensional vectors
tend to be sparse, it is important to study the two
data properties e.g., dimensionality and sparsity to-
gether, along with other factors such as database size
and distance metric.

In terms of complexity of approximate NN search
methods like Locality Sensitive Hashing (LSH),
general bounds are known (Gionis et al., 1999;
Indyk & Motwani, 1998). However, it has not been
studied how the complexity changes with the diffi-
culty of NN search based on the data properties. Also,
heuristic hashing methods based on Principal Compo-
nent Analysis (PCA) have been used extensively with-
out any theoretical basis of good performance.

The main contributions of this paper are:
1. We introduce Relative Contrast, a new concrete
measure of difficulty in nearest neighbor search in a
given dataset. This is independent of the indexing
methods. It, for the first time, enables us to analyze
how the difficulty of nearest neighbor search is affected
simultaneously by different data properties such as di-
mensionality, sparsity, database size, and the norm of
Lp distance metric for a given data set. Unlike the ex-
isting works that only provide asymptotic discussions
on the effect of one or two data properties in isolation,
we derive relative contrast as an explicitly computable
function of various data properties in a non-asymptotic
case. (Sec. 2)
2. We provide a theoretical analysis of how relative
contrast affects the complexity of LSH, a popular ap-
proximate NN search method. This is the first work
that relates the complexity of approximate NN search
methods to the difficulty of a given dataset, allowing
us to analyze how the complexity is affected by various
data properties simultaneously. For the practitioners’
benefit, relative contrast also provides insights on how
to choose parameters e.g., the number of hash tables in
LSH, and a principled explanation of why PCA-based
methods perform well in practice. (Sec. 3)
3. We reveal the relationship between relative con-
trast and previous studies on measuring NN search
difficulty, and show that most existing works can be
derived as special asymptotic cases for dense vectors
of the proposed measure. (Sec. 4)

2. Relative Contrast (Cr)

Suppose we are given a data set X containing n d-
dimensional points, X = {xi, i = 1, . . . , n}, and a
query q where xi, q ∈ Rd are i.i.d samples from an un-
known distribution p(x). Further, letD(·, ·) be the dis-
tance function for the d-dimensional data. We focus on

Lp distances in this paper: D(x, q)=(
∑

j |xj−qj |p)1/p.

2.1. Definition

Suppose Dq
min = min

i=1,...n
D(xi, q) is the distance to the

nearest database sample,1 and Dq
mean = Ex[D(x, q)]

is the expected distance of a random database sample
from the query q. We define relative contrast for the

data set X for a query q as : Cq
r =

Dq
mean

Dq
min

. It is a

very intuitive measure of separability of the nearest
neighbor of q from the rest of the database points.
Now, taking expectations with respect to queries, the
relative contrast for the dataset X is given as,

Cr =
Eq[D

q
mean]

Eq[D
q
min]

=
Dmean

Dmin
(1)

Intuitively, Cr captures the notion of difficulty of NN
search in X. Smaller the Cr, more difficult the search.
If Cr is close to 1, then on average a query q will have
almost the same distance to its nearest neighbor as
that to a random point in X. This will imply that NN
search in database X is not very meaningful.

In the following sections, we derive relative contrast as
a function of various important data characteristics.

2.2. Estimation

Suppose xj and qj are the jth dimensions of vectors x
and q, respectively. Let us define,

Rj = Eq[|xj − qj |p], R =
d

∑

j=1

Rj . (2)

Both Rj and R are random variables (because xj is
a random variable). Suppose each Rj has finite mean
and variance denoted as µj = E[Rj ], σ2

j = var[Rj ].
Then, the mean and variance of R can be given as,

µ =

d
∑

j=1

µj , σ2 ≤
d

∑

j=1

σ2
j .

Here, if dimensions are independent then σ2 =
∑

j σ
2
j .

Without the loss of generality, we can scale the data
such that the new mean µ′ is 1. Then, the variance of
the scaled data, called normalized variance, will be:

σ′2 =
σ2

µ2
. (3)

The normalized variance gives the spread of the dis-
tances from query to random points in the database

1Without loss of generality, we assume that the query
is distinct from the database samples, i.e., Dq

min 6= 0.
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with the mean distance fixed at 1. If the spread is
small, it is harder to separate the nearest neighbor
from the rest of the points. Next, we estimate the
relative contrast for a given dataset as follows.

Theorem 2.1 If {Rj, j=1,...d} are independent and
satisfy Lindeberg’s condition,2 the relative contrast can
be approximated as,

Cr =
Dmean

Dmin
≈ 1

[1 + φ−1( 1n + φ(−1
σ′

))σ′]
1

p

(4)

where φ is the c.d.f of standard Gaussian, n is the
number of database samples, σ′ is normalized standard
deviation, and p is the distance metric norm.

Proof: Since Rj are independent and satisfy Linde-
berg’s condition, from central limit theorem, R will be
distributed as Gaussian for large enough d with mean
µ =

∑

j µj and variance σ2 =
∑

j σ
2
j . Normalizing the

data by dividing by µ, the new mean is µ′ = 1, and new
variance is σ′2 as defined in (3). Now, the probability
that R ≤ α for any 0 ≤ α ≤ 1 is given as

P (R ≤ α) ≈ φ(
α− 1

σ′ )− φ(
0− 1

σ′ ), (5)

where φ is the c.d.f of standard Gaussian, and the sec-
ond term in RHS is the correction factor since R is
always nonnegative.

Let’s denote the number of samples for which R ≤ α
as N(α). Clearly, N(α) follows Binomial distribution
with probability of success given in (5):

P (N(α) = k) =

(

n
k

)

(P (R ≤ α))k(1−P (R ≤ α))n−k.

Hence the expected number of database points, N̄(α)
that satisfy R ≤ α can be computed as

N̄(α)=E[N(α)]=nP (R ≤ α) = n(φ(
α− 1

σ′ )−φ(
−1

σ′ )).

Recall Dmin is the expected distance to the nearest
neighbor and Rmin ≈ Dp

min.
3 Thus, N̄(Dp

min) ≈
N̄(Rmin) = 1. Hence,

Dmin ≈ (N̄−1(1))
1

p ≈ [1 + φ−1(
1

n
+ φ(

−1

σ′ ))σ
′]

1

p (6)

Moreover, after normalization, R follows a Gaus-
sian distribution with mean 1. So, Rmean = 1, and

2Lindeberg’s condition is a sufficient condition for cen-
tral limit theorem to be applicable even when variables are
not identically distributed. Intuitively speaking, the Lin-
derberg condition guarantees that no Rj dominates R.

3The approximation becomes exact when metric L1 is
considered. For other norms (e.g., p = 2), bounds on Dmin

can be further derived.

Dmean ≈ R
1

p
mean = 1. Thus, the relative contrast can

be approximated as:

Cr =
Dmean

Dmin
≈ 1

[1 + φ−1( 1n + φ(−1
σ′

))σ′]
1

p

which completes the proof.

Range of Cr: Note that when n is large enough
φ(−1

σ′
) ≤ 1

n+φ(−1
σ′

) ≤ 1
2 , so 0 ≤ 1+φ−1( 1n+φ(−1

σ′
))σ′ ≤

1 and hence Cr is always ≥ 1. And moreover, when
σ′ → 0, φ(−1

σ′
) → 0, and Cr → 1.

Generalization 1: The concept of relative contrast
can be extended easily to the k-nearest neighbor set-
ting by defining Ck

r = Dmean

Dknn
, where Dknn is the ex-

pected distance to the kth nearest neighbor. Using
N̄(Dp

knn) ≈ N̄(Rknn) = k, and following similar argu-
ments as above, one can easily show that

Ck
r =

Dmean

Dknn
≈ 1

[1 + φ−1( kn + φ(−1
σ′

))σ′]
1

p

(7)

2.3. Effect of normalized variance σ′ on Cr

From (4), relative contrast is a function of database
size n, normalized variance σ′2, and distance metric
norm p. Here, σ′ is a function of data characteristics
such as dimensionality and sparsity. Figure 1 shows
how Cr changes with σ′ according to (4) when n is
varied from 100 to 100M , and 0 < σ′ < 0.2 (Note that
σ′ is usually very small for high dimensional data, e.g.,
much smaller than 0.1). It is clear that smaller σ′ leads
to smaller relative contrast, i.e., more difficult nearest
neighbor search.

In the above plots, p was fixed to be 1 but other values
yield similar results. An interesting thing to note is
that as the database size n increases, relative contrast
increases. In other words, nearest neighbor search is
more meaningful for a larger database.4 However, this
effect is not very pronounced for smaller values of σ′.

2.4. Data Properties vs σ′

Since we already know the relationship between Cr

and σ′, by analyzing how data properties affect σ′, we
can find out how data properties affect Cr, i.e., the
difficulty of NN search. Though many data proper-
ties can be studied, in this work we focus on sparsity
(a very important property in many domains involv-
ing, say, text, images and videos), together with other
properties like data dimension and metric.

4It should not be confused with computational
ease since computationally search costs more in larger
databases.
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Figure 1. Change in relative contrast with respect to nor-
malized data variance σ′ as in (4). The database size n

varies from 100 to 100M and p = 1. Graph is best viewed
in color.

Suppose, the jth dimensions of vectors x and q are
distributed the same way as a random variable Vj . But
each dimension has only sj probability of having a
non-zero value where 0 < sj ≤ 1. Denote mj,p as
the p-th moment of |Vj |, and m′

j,p as the p-th moment
of |Vj1 − Vj2|, where Vj1 and Vj2 are independently
distributed as Vj .

Theorem 2.2 If dimensions are independent, then

σ′2 =

∑d

j=1
s2jm

′

j,2p+2(1−sj)sjmj,2p−µ2

j

(
∑d

j=1
µj)2

,

where µj = s2jm
′
j,p + 2(1 − sj)sjmj,p. Moreover, if

dimensions are i.i.d.,

σ′ =
1

d1/2

√

(m′
2p − 2m2p)s+ 2m2p

s[(m′
p − 2mp)s+ 2mp]2

− 1. (8)

Proof: Please see the supplementary material (He,
2012).

For some distributions, mp and m′
p have a closed form

representation. For example, if every dimension fol-
lows uniform distribution U(0, 1), then pth moment is
easy to compute as: mp = 1

(p+1) ,m
′
p = 2

p+1 − 2
p+2 .

However, if mp and m′
p do not have a closed form

representation, one can always generate samples ac-
cording to the distribution, and estimate mp and m′

p

empirically.

2.5. Data Properties vs Relative Contrast Cr

We now summarize how different database properties
and distance metric affect relative contrast.

Data Dimensionality (d): From (8), it is easy to see
that larger d will lead to smaller σ′. Moreover, from
(4), smaller σ′ implies smaller relative contrast Cr,
making NN search less meaningful. This indicates the
well-known phenomenon of distance concentration in
high dimensional spaces. However, when dimensions
are not independent, thankfully, the rate at which dis-
tances start concentrating slows down.

Data Sparsity (s): From (8), we can see that σ′ =

1
d1/2

√

(m′

2p−2m2p)+
2m2p

s

[(m′

p−2mp)s+2mp]2
− 1. If m′

p − 2mp ≥ 0, when s

becomes smaller (i.e., data vectors have fewer non-zero
elements), σ′ gets larger, and so does the relative con-
trast. Another interesting case is when p → 0+, i.e., L0

or zero-one distance. In this case, mp = m′
p = 1, and

from (8) σ′ = 1
d1/2

√

(1−s)2

1−(1−s)2 , which increases mono-

tonically as s decreases. However, for general cases, it
is not easy to theoretically prove how σ′ will change
when s gets smaller. But in experiments, we have al-
ways found that smaller s will lead to larger σ′. In
other words, when data vectors become more sparse,
NN search becomes easier. That raises another inter-
esting question: What is the effective dimensionality
of sparse vectors? One may be tempted to use d · s
as the intrinsic dimensionality. But as we will show in
the experimental section, this is generally not the case
and relative contrast provides an empirical approach
to finding intrinsic dimensionality of high-dimensional
sparse vectors.

Database Size (n): From (4), keeping σ′ fixed, Cr

increases monotonically with n. Hence, NN search is
more meaningful in larger databases. Actually, when
n→∞, irrespective of σ′, 1+φ−1( 1n +φ(−1

σ′
))σ′ → 0,

and Cr → ∞. Thus, when the database size is large
enough, one doesn’t need to worry about the meaning-
fulness of NN search irrespective of the dimensionality.
However, unfortunately when dimensionality is high,
Cr increases very slowly with n, making the gains not
very pronounced in practice. This is the same phe-
nomenon noticed in Fig. 1 for small values of σ′.

Distance Metric Norm (p): Since p appears in both
(4) and (8), it makes analysis of relative contrast with
respect to p not as straightforward. In the special case
when data vectors are dense (i.e., s = 1), and each
dimension is i.i.d with uniform distribution, one can
show that smaller p leads to bigger contrast.

2.6. Validation of Relative Contrast

To verify the form of relative contrast derived in Sec.
2, we conducted experiments with both synthetic and
real-world datasets, which are summarized below.

2.6.1. Synthetic Data

We generated synthetic data by assuming each dimen-
sion to be i.i.d from uniform distribution U [0, 1]. Fig.
2 compares the predicted (theoretical) relative con-
trast with the empirical one. The solid curves show the
predicted contrast computed using (4), where the nor-
malized variance σ′ is estimated using (8). The dotted
curves show the empirical contrast, directly computed
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Figure 2. Experiments with synthetic data on how relative
contrast changes with different database characteristics.
Graphs are best viewed with color.

according to the definition in (1) from the data by av-
eraging the results over one hundred queries. For most
of the cases, the predicted and empirical contrasts have
similar values.

Fig. 2 (a) confirms that as dimensionality increases,
relative contrast decreases, thus making the nearest
neighbor search harder. Moreover, except for very
small d, the prediction is close to the empirical con-
trast verifying the theory. It is not surprising that
predictions are not very accurate for small d since the
central limit theorem(CLT) is not applicable in that
case. It is interesting to note that (4) also predicts the
rate at which contrast changes with d, unlike the pre-
vious works (Beyer et al., 1999; Aggarwal et al., 2001)
which only show that NN search becomes impossible
when dimensionality goes to infinity.

Fig. 2 (b) shows how data sparsity affects the contrast
for two different choices of d. The main observation
is that as s increases (denser vectors), contrast de-
creases, making nearest neighbor search harder. In
other words, lesser the number of non-zero dimensions
for a fixed d, easier the search. In fact, the search re-
mains well-behaved even in high-dimensional datasets
if data is sparse. The prediction is quite accurate in
comparison to the empirical one except when s.d is
small and hence CLT does not apply any more. As a
note of caution, one should not regard s.d as the in-
trinsic dimensionality of the data, since a dataset with
dense vectors of dimension s.d usually has different
contrast than the d-dimensional, s-dense data set.

The effects of two other characteristics i.e., Lp distance
metric for different p and database size n are shown in
Figs. 2 (c) and (d), respectively. The effect of these

Table 1. Description of the real-world datasets. n -
database size, d - dimensionality, s - sparsity (fraction of
nonzero dimensions), de - effective dimensionality contain-
ing 85% of data variance.

n d s de
gist 95000 384 1 71
sift 95000 128 0.89 40

color (histograms) 95000 1382 0.027 22
image (bag-of-words) 95000 10000 0.024 71

parameters on relative contrast is milder than that of
d and s. For large d, the contrast drops quickly and it
becomes hard to visualize the effects of p and n. So,
here we show these plots for smaller values of d. From
Fig. 2 (c) it is clear that for norms less than 1, contrast
is the highest. Note that we get an approximation
for p > 1 in Theorem 2.1, which causes the bias in
prediction of Cr for p = 3, 4. This observation matches
the conclusion from (Aggarwal et al., 2001) for dense
vectors. Fig. 2 (d) shows that as the database size
increases, it becomes more meaningful to do nearest
neighbor search. But as the dimensionality is increased
(from 30 to 60 in the plot), the rate of increase of
contrast with n decreases. For very high dimensional
data, the effect of n is very small.

2.6.2. Real-world Data

Next, we conducted experiments with four real-world
datasets commonly used in computer vision applica-
tions: sift, gist, color and image. The details of these
sets are given in Table 1. The sift and gist sets contain
128-dim and 384-dim vectors, which are mostly dense.
On the other hand, both color and image datasets are
very high dimensional as well as sparse. Color data
set contains color histogram of images while the image
data set contains bag-of-words representation of local
features in images.

While deriving the form of relative contrast in Sec. 2,
we assumed that dimensions were independent. How-
ever, this assumption may not be true for real-world
data. One way to address this problem would be to
assume that the dimensions become independent after
embedding the data in an appropriate low-dimensional
space. In these experiments, we define effective dimen-
sionality de as the number of dimensions necessary to
preserve 85% variance of the data5. The effective di-
mensionality for different datasets is shown in Table
1. Table 2 compares the empirical and predicted rela-
tive contrasts for different datasets. Since our theory
is based on the law of large numbers, the prediction
is more accurate on image and gist data sets as their

5For large databases, one can use a small subset to es-
timate the covariance matrix.
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Table 2. Experiments with four real-world datasets. Here,
predicted contrast is computed using the effective dimen-
sionality containing 85% of data variance.

p=1 p=2
gist empirical contrast 1.83 1.78
gist predicted contrast 1.62 1.87
sift empirical contrast 4.78 4.23
sift predicted contrast 2.03 3.94
color empirical contrast 3.19 4.81
color predicted contrast 2.78 8.10
image empirical contrast 1.90 1.66
image predicted contrast 1.62 1.87

effective dimensions are large enough. For the color
data, de is too small (just 22) and hence the predic-
tion of relative contrast shows more bias for this set.

One interesting outcome of these experiments is that
our analysis provides an alternative way of finding in-
trinsic dimensionality of the data which can be further
used by various nearest neighbor search methods. The
traditional method of finding intrinsic dimensionality
using data variance suffers from the assumption of lin-
earity of the low-dimensional space and the arbitrary
choice of threshold on variance. On the other hand,
nonlinear methods are computationally prohibitive for
large datasets. In the relative contrast based method,
for a given dataset, one can sweep over different values
of d′ where 0 < d′ < d, and find the one which gives the
least discrepancy between the predicted and empirical
contrasts averaged over different p. For large datasets,
one can use a smaller sample and a few queries to es-
timate the empirical contrast. Using this procedure,
the intrinsic dimensionality for the four datasets turns
out to be: sift - 41, gist - 75, color - 41, image - 70.
For the two sparse datasets (color and image), it indi-
cates the dimensionality of equivalent low-dimensional
dense vector space. It is interesting to note that in-
trinsic dimensionality is not equal to d · s for the two
sparse datasets as discussed before. For image dataset,
it is much smaller than d·s indicating high correlations
in non-zero entries of the data vectors.

3. Relative Contrast and Hashing

3.1. Relative Contrast and LSH

LSH methods are commonly used in many practical
large-scale search systems due to their efficiency and
ability to deal with high-dimensional data. In LSH,
each data point x is converted into codes by using a
series of k hash functions hj(x), j = 1, · · · , k. Each
hash function is designed to satisfy the locality con-
dition i.e., neighboring points have the same hashed
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Figure 3. Performance of LSH on three datasets: sift, gist,
and color. (a) Recall of the nearest neighbor. Each curve
represents different number of bits, e.g., k = 12, 16, ...40.
Each marker on the curve represents different number of
hash tables l, e.g., l = 1, 2, ...128. (b) Recall of the nearest
neighbor for different number of hash tables for k = 32.
Graphs are best viewed with color.

value with high probability and vice-a-versa. A com-

monly used hash function in LSH is h(x) = ⌊wT x+b
t ⌋,

where w is a vector with entries sampled from a p-
stable distribution, and b is uniformly distributed as
U [0, t] (Datar et al., 2004). We now provide the fol-
lowing theorems to show how relative contrast (Cr)
affects the complexity of LSH.

Theorem 3.1 LSH can find the exact nearest neigh-
bor with probability 1 − δ by returning O(log 1

δn
g(Cr))

candidate points, where g(Cr) is a function monoton-
ically decreasing with Cr.

Proof: Please see the supplementary material.

Corollary 3.2 LSH can find the exact nearest neigh-
bor with a probability at least 1 − δ with a time
complexity O(d log 1

δn
g(Cr) log n) and space complexity

O(log 1
δn

(1+g(Cr))+nd). The number of hash tables (l)

needed is l = O(log 1
δn

g(Cr)).

Proof: Please see the supplementary material.

The above theorems imply that, among the datasets
of same size, to get the same recall of the true nearest
neighbor, the dataset with higher relative contrast Cr

will have better time and space complexity. It will
also return less number of candidates for reranking,
and need fewer number of hash tables.

Note that the above theorems share some similarity
to the results in (Gionis et al., 1999) about the com-
plexity of LSH. However, the main difference is that
the above theorems relate the complexity of LSH to
relative contrast Cr, enabling us to analyze how the
complexity of LSH is affected by various data proper-
ties of the dataset simultaneously. To the best of our
knowledge, our work is the first one on this important
topic.

To verify the effect of relative contrast on LSH, we
conducted experiments on three real-world datasets.
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Figure 4. Recall vs the number of returned points when
using hamming ranking. Number of bits k = 20 for (a)
and k = 28 for (b). Graphs are best viewed with color.

In Fig. 3, performance of LSH for L1 distance (i.e.,
p = 1) is given on three datasets: sift, gist and color.
From Table 2, for p = 1, Cr for the three datasets
is in this order: sift(4.78) > color(3.19) > gist (1.83).
From Fig. 3 (a), we can see that for several settings of
number of bits and number of tables, the number of re-
turned points needed to get the same nearest neighbor
recall for the three sets follows sift < color < gist, as
predicted by Theorem 3.1. Moreover, from Fig. 3 (b),
the number of hash tables needed to get the same recall
follows sift < color < gist, as predicted by Corollary
3.2. We have tried experiments with k = 12, 16..., 40
and observe the same trend, but only show results for
k = 32 due to space limit.

The above experiments used the typical framework of
hash table lookup. Another popular way to retrieve
neighbors in code space is via hamming ranking. When
using a k-bit code, points that are within hamming
distance r to the query are returned as candidates. In
Figure 4, we show the recall of nearest neighbor for two
different values of k. Similar to the case of hash ta-
ble lookup experiments, the number of returned points
needed to get the same recall follows sift < color <
gist. This follows the same order as suggested by rel-
ative contrast. The interesting thing is that color has
much higher dimensionality than gist, but its sparsity
helps in achieving better relative contrast and hence
better search performance.

3.2. Relative Contrast and PCA hashing

Hashing methods that use PCA as a heuristics
often achieve quite good performance in practice
(Weiss et al., 2008; Gong & Lazebnik, 2011). In this
section, we show PCA hashing is actually seeking pro-
jections that maximize relative contrast in each pro-
jection with L2 distance under some assumptions. A
commonly used hash function in PCA-based hashing
methods is

h(x) = sgn(wTx+ b), (9)
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Figure 5. Recall of 1-NN for hamming reranking with dif-
ferent hashing methods on color data using (a) 80 bits,
(b)100 bits. Relative contrast based method (MRC) can
improve upon PCA-based hashing. Graphs are best viewed
with color.

where w is heuristically picked as a PCA direction,
and b is a threshold which is usually chosen as E[wTx].
Assuming the data to be zero-centered, i.e., E[x] = 0,
leads to b = 0. Since q and x are assumed to be i.i.d
samples from some unknown p(x), E[q] = 0 as well.

For a query q, denote xq,NN as q’s NN in the database.
Denote SNN = Eq[(q − xq,NN )(q − xq,NN )T ], and
ΣX = (1/n)

∑

i xix
T
i . The following theorem shows

that maximizing relative contrast will lead us to PCA
hashing under some assumptions.

Theorem 3.3 For linear hashing as (9), to find pro-
jection vector w to maximize relative contrast, we

should find ŵ = argmax
w

wTΣXw
wTSNNw

. If we further as-

sume that the nearest neighbors are isotropic, i.e.,
SNN = αI, we will get ŵ = argmax

w
wTΣXw, i.e.,

PCA hashing.

Proof: Please see the supplementary material.

If we do not assume nearest neighbors to be isotropic,
we can empirically compute SNN from a few samples.
And then we can find projection vectors w in (9) as

ŵ = argmax
w

wTΣXw
wTSNNw

, which are the generalized eigen-

vectors of ΣX and SNN . This will often obtain better
results than PCA hashing. We provide one example
in Figure 5, in which, ”MRC” represents the method
we described as above, and ”PCA”, ”LSH”, ”SH” are
PCA hashing, Locality Sensitive Hashing, and Spec-
tral Hashing (Weiss et al., 2008) respectively.

4. Related Works

Some of the influential works on analyzing NN search
difficulty are (Beyer et al., 1999) and (Francois et al.,
2007), whose main results are shown in Theorem 4.1
and 4.2.

Theorem 4.1 (Beyer et al., 1999) Denote Dq
max =

max
i=1,...n

D(xi, q) and Dq
min = min

i=1,...n
D(xi, q). If
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lim
d→∞

var( D(xi,q)
p

E[D(xi,q)p]
) → 0, then for every ǫ ≥ 0,

lim
d→∞

P [Dq
max ≤ (1 + ǫ)Dq

min] = 1.

Theorem 4.2 (Francois et al., 2007) If every di-
mension of the data is i.i.d., when d → ∞,√

V ar(||xi−q||p)
E(||xi−q||p) ≈ 1√

d
1
p
σj

µj
, where σj = V ar(||xj

i −qj ||pp)
and µj = E(||xj

i − qj ||pp) are the variance and mean of
each dimension.

4.1. Relations Between Our Analysis and
Previous Works

Relation to Beyer’s Work
Note that if the distance function D(xi, q) in Beyer’s

work is Lp distance, then var( D(xi,q)
p

E[D(xi,q)p]
) = σ2

µ2 =

(σ′)2. When σ′ → 0 (i.e., d → ∞), Beyer’s work shows
that Dq

max ≈ Dq
min, and our work shows Cr → 1,

or equivalently Dmean → Dmin. So we will get the
same conclusion: when d → ∞, NN search is not very
meaningful, because we can not differentiate the near-
est neighbor from other points. However, Beyer’s the-
ory works for the worst case (i.e., compare NN point to
the worst point with maximum distance), while ours
works for the average case. Also, it does not analyze
how the search difficulty changes with other important
data characteristics such as data sparsity or database
size.

Relation to Francois’s Work
In Theorem 4.2, a measurement called ’relative vari-

ance’, defined as

√
V ar(||xi−q||p)
E(||xi−q||p) , is discussed, which

is a modification of the condition var( D(xi,q)
p

E[D(xi,q)p]
) in

Beyer’s work. If

√
V ar(||xi−q||p)
E(||xi−q||p) → 0 , NN search will

become meaningless. The following theorem reveals
the relationship between relative variance and relative
contrast.

Theorem 4.3 In (4), if σ′ → 0 (e.g., d → ∞),
Cr ≈ 1

1+φ−1( 1

n ) 1

p
1

d1/2

σj
µj

.

Proof: Please see the supplementary material.

From Theorem 4.3, we see that when σ′ → 0 (e.g.,
d → ∞), the relative contrast monotonically depends
on 1

p
1

d1/2

σj

µj
, which is the same as relative variance as

in Theorem 4.2.

To summarize, most of the known analysis can be de-
rived as special asymptotic cases (when σ′ → 0, e.g.,
d → ∞) of the proposed measure with the focus on
only one or two data properties.

5. Conclusion and Future Work

In this work, we introduced a new measure called rela-
tive contrast to describe the difficulty of nearest neigh-
bor search in a data set. The proposed measure can
be used to evaluate the influence of several crucial
data characteristics such as dimensionality, sparsity,
and database size simultaneously in arbitrary normed
metric spaces. Furthermore, we show how relative con-
trast determines the difficulty of ANN search with LSH
and provides guidance for better parameter settings.
In the future, we would like to relax the independence
assumption used in the theory of relative contrast, and
also study how relative contrast affects the complex-
ity of other approximate NN search methods besides
LSH. Moreover, we will explore a better but harder

definition of relative contrast i.e., Cr = Eq[
Dq

mean

Dq
min

].
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