
Published as a conference paper at ICLR 2024

LANGUAGE MODEL CASCADES:
TOKEN-LEVEL UNCERTAINTY AND BEYOND

Neha Gupta, Harikrishna Narasimhan, Wittawat Jitkrittum, Ankit Singh Rawat,
Aditya Krishna Menon, Sanjiv Kumar
Google Research, New York
{nehagup, hnarasimhan, wittawat, ankitsrawat, adityakmenon, sanjivk}@google.com

ABSTRACT

Recent advances in language models (LMs) have led to significant improvements
in quality on complex NLP tasks, but at the expense of increased inference costs.
Cascading offers a simple strategy to achieve more favorable cost-quality trade-
offs: here, a small model is invoked for most “easy” instances, while a few “hard”
instances are deferred to the large model. While the principles underpinning cas-
cading are well-studied for classification tasks — with deferral based on predicted
class uncertainty favored theoretically and practically — a similar understanding
is lacking for generative LM tasks. In this work, we initiate a systematic study of
deferral rules for LM cascades. We begin by examining the natural extension of
predicted class uncertainty to generative LM tasks, namely, the predicted sequence
uncertainty. We show that this measure suffers from the length bias problem, ei-
ther over- or under-emphasizing outputs based on their lengths. This is because
LMs produce a sequence of uncertainty values, one for each output token; and
moreover, the number of output tokens is variable across examples. To mitigate
this issue, we propose to exploit the richer token-level uncertainty information im-
plicit in generative LMs. We argue that naı̈ve predicted sequence uncertainty cor-
responds to a simple aggregation of these uncertainties. By contrast, we show that
incorporating token-level uncertainty through learned post-hoc deferral rules can
significantly outperform such simple aggregation strategies, via experiments on a
range of natural language benchmarks with FLAN-T5 models. We further show
that incorporating embeddings from the smaller model and intermediate layers of
the larger model can give an additional boost in the overall cost-quality tradeoff.

1 INTRODUCTION

Recent advances in generative language modeling have yielded a series of Transformer-based mod-
els with remarkably improved quality on complex NLP tasks (Radford et al., 2018; Raffel et al.,
2020; Brown et al., 2020; Black et al., 2022; Hoffmann et al., 2022; Chowdhery et al., 2022; Wei
et al., 2022; Chung et al., 2022; Tay et al., 2023; Anil et al., 2023; Touvron et al., 2023; Team
et al., 2023). Unfortunately, such models also involve significantly increased inference costs, which
has motivated a series of efforts at reducing the same. These span careful infrastructure optimiza-
tion (Chowdhery et al., 2022; Pope et al., 2022; Sheng et al., 2023), rethinking the autoregressive
decoding that underpin Transformers (Stern et al., 2018; Leviathan et al., 2023; Chen et al., 2023a;
Sun et al., 2023), modifications of the underlying model architecture (Dao et al., 2022), and model
compression strategies (Frantar & Alistarh, 2023; Agarwal et al., 2023).

Cascading is one simple strategy to achieve more favorable cost-quality tradeoffs via adaptive in-
ference. In a two-model cascade, a small model is invoked for most “easy” instances, while a few
“hard” instances are deferred to a large model. Cascades have been widely explored in the vision
domain (Viola & Jones, 2001; Trapeznikov & Saligrama, 2013; Bolukbasi et al., 2017; Huang et al.,
2018; Rawat et al., 2021; Kag et al., 2023; Jitkrittum et al., 2023), and have seen increasing adop-
tion within NLP (Mamou et al., 2022; Varshney & Baral, 2022; Khalili et al., 2022; Dohan et al.,
2022; Chen et al., 2023b;a). Importantly, cascades can be implemented in a black-box fashion over
existing models, and do not necessitate any additional training.

1

Published as a conference paper at ICLR 2024

Figure 1: (a) In cascades, small models are used for easy instances whereas hard instances are
routed to larger models. For generative LMs, the key challenge is to design a deferral rule based
on uncertainties from multiple tokens. (b) Standard baselines which take the product and geometric
mean of the probabilities are affected by the length of the output and perform sub-optimally. (c) Our
proposed solution captures nuanced per-token uncertainty and outperforms both baselines.

The key challenge in cascading is to design a deferral rule which decides whether to defer an input
to the larger model. The principles underpinning optimal deferral rules are well known for the
classification setting, where the standard recipe is to employ the small model’s prediction confidence,
as canonically measured by its softmax probability output (Chow’s rule (Chow, 1970)). This simple
deferral rule is remarkably hard to surpass in most natural settings (Jitkrittum et al., 2023).

However, the narrative is more complex for generative LMs. While one can naı̈vely translate Chow’s
rule for such models based on the softmax probability of the output sequence, this suffers from
a length bias issue: one tends to defer longer predictions, regardless of quality. Further, simply
normalizing the probability by sequence length tends to over-correct this bias, and defer shorter
predictions. Intuitively, such naı̈ve translations of Chow’s rule ignore a key distinction between
the classification and generative LM setting: the former involves a single probability distribution
over labels, while the latter involves a sequence of distributions over multiple tokens of the LM
output; moreover, the number of output tokens differs across examples. This variability complicates
summarizing the sequence of uncertainty (or confidence) values into a single deferral score.

To mitigate the length bias and capture fine-grained information from the uncertainty vector over
tokens, we propose to use quantiles over the vector. Via experiments on a range of NLP benchmarks
and FLAN-T5 models, we show that these quantiles can capture rich and complementary sources
of uncertainty information from the uncertainty sequence vector and do better than the simple ag-
gregation schemes like sum and average. However, we observe that there is no fixed quantile value
which works across all datasets. This motivates us to learn a deferral rule based on these quantile
values as features, which can combine the strengths of these different quantile scores. We show
that our trained deferral rule is the most consistently performant method compared to all the natural
baseline aggregation strategies. We further show that using embeddings from the smaller model and
intermediate embeddings from the larger model can give further performance improvement.

To summarize, our contributions are:

(i) We show that simple sequence-level LM confidence measures for deferral can yield strongly
sub-optimal cost-quality tradeoffs, owing to a length bias issue (§3.5).

(ii) We introduce token-level uncertainty in the form of distribution quantiles, and show that they can
yield to consistently more effective cost-quality tradeoffs, owing to their finer-grained measure
of uncertainty. However, there is no fixed quantile which works well across all settings (§3.5).

(iii) We propose a post-hoc deferral rule trained on quantile features, and show it can outperform all
other strategies on a range of NLP benchmarks for FLAN-T5 models (§4.3). We further demon-
strate that using the large model’s intermediate embeddings can significantly boost performance.

2

Published as a conference paper at ICLR 2024

2 BACKGROUND AND PROBLEM SETUP

In this section, we discuss the relevant background and set up the problem of LM cascades.

Language models (LMs). Given a finite vocabulary V (e.g., tokens derived from Sentence-
Piece (Kudo & Richardson, 2018)), a language model (LM) defines a distribution p(· | x) ∈ �(V)
over all possible tokens given any context x = (x1; : : : ; xm) ∈ Vm. This in turn defines a distri-
bution over sequences y = (y1; : : : ; yn) ∈ Vn for any n ∈ N+, with p(y1; : : : ; yn | x) = p(y1 |
x) ·

Qn�1
i=1 p(yi+1 | x; y1; : : : ; yi) via the chain rule of probability.

LMs based on Transformers (Vaswani et al., 2017) have proven increasingly popular in recent years.
Such models are typically pre-trained on large corpora based on self-supervised objectives (Radford
et al., 2018; Devlin et al., 2019; Raffel et al., 2020; Brown et al., 2020; Tay et al., 2022; Anil et al.,
2023). These objectives involve different (input, output) pair constructions (x;y) (e.g., masking out
the next token), upon which one minimizes the cross-entropy or log-loss, i.e., − log p(y | x).

At inference time, given a trained LM and any input context x, it is common to perform either clas-
sification or generation. In the former, given a set of predefined choices C = {ci}i2[L] (e.g., { yes,
no }), one scores each p(ci | x) and returns the highest scoring choice. In the latter, one performs
sampling from p(· | x) to produce a suitable output string response, e.g., by temperature (Ficler &
Goldberg, 2017), top-k (Fan et al., 2018), or nucleus sampling (Holtzman et al., 2020).

Model cascades. Cascades are a simple, generic strategy to improve the inference cost-quality trade-
off (Wang et al., 2022). Given a collection of models of varying inference cost, the key idea is to
perform adaptive inference: “easy” samples are afforded less computation compared to “hard” sam-
ples. Concretely, for any test input, one first executes the lowest cost model, and uses a deferral
rule to determine whether to terminate with its prediction, or to invoke the next cheapest model.
Cascades can reduce the average inference cost if only a small fraction of inputs are deferred.

Cascades have a long history of usage in vision (Viola & Jones, 2001; Huang et al., 2018; Wang
et al., 2018), where they are often applied for classification problems. Given an instance space X
and label space Y, the classification problem seeks a classifier h : X→ Y with good average quality
under some distribution P, as measured by E(x;y)�P[q(x; y; h(x))] for some q(x; y; h(x)) ∈ R+. In
the simplest case, q(x; y; ŷ) = 1(y = ŷ) measures the classifier accuracy.

Now suppose we have two classifiers h(1); h(2), with inference costs (e.g., latencies) c(1) � c(2).
Operationally, a cascade first invokes the “small” model h(1), and then applies a deferral rule to de-
cide whether to either defer prediction to the “large” model h(2), or terminate with h(1)’s prediction.
More precisely, let r : X→ {0; 1} denote the deferral rule, where r(x) = 1 denotes that we wish to
defer to the large model. Then, the cascaded classifier is (Kag et al., 2023; Jitkrittum et al., 2023):

hcas(x) = 1(r(x) = 0) · h(1)(x) + 1(r(x) = 1) · h(2)(x):

Given an input x, the corresponding cascade quality and cost are:

Q(x; y; hcas(x))
:
= 1(r(x) = 0) · q(x; y; h(1)(x)) + 1(r(x) = 1) · q(x; y; h(2)(x))

C(x; hcas(x))
:
= 1(r(x) = 0) · c(1) + 1(r(x) = 1) · (c(1) + c(2)):

Ideally, one seeks to maximize quality given a budget B on average inference cost:

max
r : X!f0;1g

Ex;y[Q(x; y; hcas(x))] : Ex[C(x; hcas(x))] ≤ B: (1)

We note that the average cost E[C(x; hcas(x))] is related to the deferral rate D(x) = P(r(x) = 1),
via E[C(x; hcas(x))] = c(1) +D(x) · c(2). In practice, one may set r(x) = 1(s(x) < t) for suitable
s : X→ R and threshold t ∈ R. One may choose t to satisfy the inference cost constraint.

Now, we discuss cascades for generative LMs. This largely follows the setup described above,
except that we now consider probabilistic models over sequences. Concretely, suppose we have
two language models p(1); p(2), with inference costs c(1); c(2). Similarly, suppose q : Vm × Vm

0 ×
�(Vn)→ R+ is a measure of the quality of a given distribution over responses for a given prompt.
A cascade pcas of these models is parameterized by a deferral rule r : Vm → {0; 1}, and is given by:

pcas(· | x) = 1(r(x) = 0) · p(1)(· | x) + 1(r(x) = 1) · p(2)(· | x):

3

Published as a conference paper at ICLR 2024

Given an input sequencex and target sequencey , an LM cascade results in quality and cost

Q(x ; y ; pcas(� j x)) := 1(r (x) = 0) � q(x ; y ; p(1) (� j x)) + 1(r (x) = 1) � q(x ; y ; p(2) (� j x))

C(x ; pcas(� j x)) := 1(r (x) = 0) � c(1) + 1(r (x) = 1) � (c(1) + c(2)):

With these, we may construct a similar constrained objective as in Equation 1. Similarly to the
classi�cation case, we may parameterize the deferral rule asr (x) = 1(s(x) < t)) for a suitable
deferral score functions: Vm ! R (which may depend on the output ofp(1) (� j x)). We will
investigate and analyze different types of deferral score functions on different NLP tasks.

Recently, Chen et al. (2023b) introduced the FrugalGPT system to achieve ef�cient inference via
multiple strategies, including LM cascades. They also learn a deferral score to determine whether or
not to terminate prediction; however, this depends on the input prompt and the generated outputtext,
and does not consider the model's token-level uncertainty as we shall explore subsequently. A few
works have proposed to learn a router which can decide which model to use amongst a set of models
depending upon the input prompt (Shnitzer et al., 2023; Hari & Thomson, 2023). However, their
settings do not necessarily consider models of increasing capacity and hence, their routers depend
only on the input prompt not on the model con�dence.

3 CONFIDENCEMEASURES FORLANGUAGE MODEL CASCADES

A key question in the design of cascades is the choice of deferral rule. In this work, we seek
to understand the behaviors of different types of deferral functions on NLP tasks. We start by
discussing a few natural extensions of commonly used deferral rules for classi�cation.

3.1 CHOW-SUM AND CHOW-AVERAGE

Chow-Sum. We start with the multi-class classi�cation setting where the output spaceY =
f 1; : : : ; Lg andL 2 N+ . In the simplest case, one may defer if thecon�dencein the prediction
h(1) (x) of the small model is suf�ciently low. There are several means of quantifying con�dence in
classi�cation (Shafer & Vovk, 2008; Guo et al., 2017; Kendall & Gal, 2017; Jiang et al., 2018), but
arguably the simplest is thepredicted class probability(Huang et al., 2018; Wang et al., 2022; Jitkrit-
tum et al., 2023), which aligns withChow's rulefrom the closely related problem (see Mozannar &
Sontag (2020); Narasimhan et al. (2022)) of learning to reject (Chow, 1970):

s(x) := p(1) (ŷ j x); (2)

wherep(1) (� j x) denotes the predictive distribution over possible labels of the small model, and
ŷ = arg max y2 Y p(1) (y j x) denotes the predicted label.

To design a deferral rule for LM cascading, a natural starting point is to mimic the predicted class
probability (Equation 2): we may compute the (log) probability of the model generated sequenceŷ ,

ssum (x) := log p(1) (ŷ j x) (3)

=
j ŷ j� 1X

i =0

logp(1) (ŷ0
i +1 j x ; ŷ0

1; : : : ; ŷ0
i); (4)

We term this approachChow-Sum, as it involves the sum of per-token log probabilities. Analogous
to the prediction rule for classi�cation, we may setŷ := arg max y 2 V � p(1) (y j x), denoting byV�

the set of all sequences. This requires searching over an exponentially large set; however, ef�cient
approximations via greedy or beam search are feasible.

Chow-Average. Chow-Sumcomputes the aggregate sequence-level log-probability. A natural variant
is the average of the per-token log-probabilities. This is equivalently thelength normalizedlog-
probability, or the log-perplexity (Chen et al., 1998):

savg (x) :=
1

jŷ j

j ŷ j� 1X

i =0

logp(1) (ŷ0
i +1 j x ; ŷ0

1; : : : ; ŷ0
i): (5)

Note thatŷ may be computed as above, without incorporating any length-normalization.

4

Published as a conference paper at ICLR 2024

Model output tokens:

The

1
z }| {
journey always

2
z }| {
leads to Es it j en i ,

where the singer
| {z }

3

s visit their sponsor
| {z }

0
children .

Figure 2: Example of tokenized FLAN-T5 Base model output on WMT FR! EN. Red tokens have
a signi�cantly higher uncertainty compared to the others, as shown in the left plot. (For each red
token, we note the rank of its uncertainty score in the right plot.) However, due to the large number
of other more predictable tokens,Chow-Sum gives the output a relatively high score.

3.2 LIMITATIONS OF CHOW-SUM AND CHOW-AVERAGE

Given thatChow-Sum tracks closely with the well-established Equation 2, it is tempting to conclude
that this emphatically solves the LM cascade problem. However, LMs can be susceptible to the
length biasproblem (Murray & Chiang, 2018; Adiwardana et al., 2020): shorter, lower quality
responses may receive a higher probability than longer, higher quality responses. This may be seen
as a consequence of the fact that eachp(� j x ; y1; : : : ; yi) provides animperfectestimate of a “true”
probabilityp� (� j x ; y1; : : : ; yi), and that errors in these estimates compound with sequence length.

The length-bias issue naturally suggests using an average instead of sum of log-probabilities. How-
ever,Chow-Average can over-correct for this length bias, and preferentially defershorterpredictions.
We will see concrete examples of this behavior in §3.5.

More fundamentally, both approaches are inherently limited in the way they aggregate token-level
uncertainty. In particular, computing the sum or average of per-token probabilities may mask set-
tings whereindividual tokensare highly uncertain, even if the entire sequence has reasonably high
probability. Such token-level uncertainty may be highly important in certain settings such as fact-
answering: here, an LM may be (correctly) highly con�dent on articles and other grammatical prim-
itives, but these are of less interest than con�dence on tokens corresponding to entities (say). This
observation has been previously noted and exploited to allow certain “easy” tokens to be quickly
decoded (Schuster et al., 2022). This observation has also been exploited in knowledge distillation
by using different teaching modes for “easy” versus “hard” tokens (Zhong et al., 2024).

Figure 2 presents an example of this phenomenon on the WMT FR! EN dataset (details in §3.5):
there can be cases where most tokens are highly predictable (i.e.,p(y0

i j x; y0
1; : : : ; y0

i � 1) � 1), but
a few tokens are less predictable (i.e.,p(y0

i j x; y0
1; : : : ; y0

i � 1) � 0). In such cases,Chow-Sum can
yield overly optimistic uncertainty estimates. This motivates us to consider richer representations
of uncertainty which can capture token-level uncertainty, instead of simply computing the sum or
average over the sequence.

3.3 BEYOND CHOW-SUM AND CHOW-AVERAGE: CHOW-QUANTILE

The discussion in §3.2 suggests there is value in considering the following generalization of the
maximal sequence probability:

squant (x ; �) := quantile � (p(1) (ŷ0
1 j x); p(ŷ0

2 j x ; ŷ0
1); : : : ; p(ŷ0

n j x ; ŷ0
1; : : : ; ŷ0

n � 1)) ;

whereŷ := arg max y 2 V � p(1) (y j x) is the most probable output sequence (or a suitable approxi-
mation thereof) underp(1) . Here,quantile � computes the� -quantile of the set of per-token log
probabilities. For instance,� = 0 would correspond to taking the minimum per-token log proba-
bility as the deferral score. One may regard quantiles as another way of converting the token-level
uncertainty distribution into a single score, which are capable of capturing richer information from
the token-level uncertainty distribution. For example, employing themaximaltoken uncertainty
(i.e., theminimumof the per-token probabilities (Stengel-Eskin & Van Durme, 2022)) can be useful
in scenarios where most tokens are predictable, but a few important tokens are not (per Figure 2).

5

Published as a conference paper at ICLR 2024

Figure 3: Deferral curves on MNLI, TriviaQA, and WMT DE! FR for a FLAN-T5 Base! Large
cascade.Chow-Quantile consistently outperformsChow-SumandChow-Average . This con�rms there
is value in going beyond na�̈ve sequence probability as an uncertainty measure for cascading.

Next, we evaluate all the aforementioned approaches on multiple NLP tasks. For that, we describe
the experimental setup used for the evaluation.

3.4 EXPERIMENTAL SETUP

Models. We employ FLAN-T5 (Chung et al., 2022) models, which are T5 models (Raffel et al.,
2020) that have undergone instruction tuning (Wei et al., 2022). This family offers a range of models
of different sizes, spanning Small (80M parameters) to XXL (11B parameters), and have demon-
strated strong few-shot performance on a range of NLP benchmarks. In the body, we primarily
focus on a two-model cascade of FLAN-T5 Base and FLAN-T5 Large. Results for other models are
included in the Appendix. We employ these models with few-shot prompting and greedy decoding.

Evaluation. We summarize performance using thedeferral curve. Consider a candidate deferral
rule produced by thresholdings(x) 2 R via r (x) = 1(s(x) < t). Let pcas denote the associated
cascaded LM. For a �xed thresholdt, we may compute the associateddeferral rateP(r (x) = 1) , and
the associatedcascade qualityE[Q(x ; y ; pcas(� j x))] . The deferral curve is produced by plotting
the trade-off between deferral rate and cascade quality ast is varied. As a scalar summary, we report
thearea under the deferral curve(AUC-DF). For a given dataset, higher AUC-DF values indicate
better deferral curves. Note that the range of AUC-DF values vary across datasets, however.

Datasets. In the body, we show deferral curves for three different NLP tasks: MNLI (Williams et al.,
2018), a multi-class classi�cation problem; TriviaQA (Joshi et al., 2017), a closed-book question an-
swering problem; and WMT DE! FR, a translation problem. We report AUC-DF numbers for an
expanded dataset pool. These spanClassi�cation (IMDb (Maas et al., 2011), SuperGLUE (Wang
et al., 2019a), MNLI (Williams et al., 2018), ANLI (Nie et al., 2020));Question answering(Triv-
iaQA (Joshi et al., 2017), NaturalQA (Kwiatkowski et al., 2019), TyDiQAf ID, SW, FI g (Clark
et al., 2020));Reading comprehension(Lambada (Paperno et al., 2016), SQuAD (Rajpurkar et al.,
2016));Translation(WMT 14: EN ! FR (Bojar et al., 2014), WMT 19: DE! FR (Foundation),
and WMT 14: FR! EN (Bojar et al., 2014)); andCommon-sense reasoning(Winogrande (Sak-
aguchi et al., 2021)). Note that we treat all problems as �nding a text to text mapping. So for
classi�cation tasks, we encode the classes as strings. For evaluation, we take the model's output text
and perform a string comparison to the label. See Table 2 (Appendix) for more details.

3.5 EVALUATING CONFIDENCEMEASURES FORCASCADES

We now empirically validate the critiques in §3.2, demonstrating that using the standard se-
quence probability (Chow-Sum) to defer can result in overly penalizing longer sequences. More-
over, Chow-Average �ips this bias and overly defers shorter sequences. We then verify that the
Chow-Quantile generalization proposed above can capture richer token-level uncertainty.

Summary of results. Figure 3 plots the deferral curves for three datasets. We see that (for
a particular choice of quantile),Chow-Quantile consistently outperforms standardChow-Sum and
Chow-Average . AUC-DF values for all datasets are included in Table 4. Looking at the table, we see
that while aparticular choice of quantile is able to do well, there is no single consistent choice that
performs well across tasks. Next, we discuss insights into the results by using WMT FR! EN as an
example dataset.

6

Published as a conference paper at ICLR 2024

(a) (b) (c)

Figure 4:(a) Relation between deferral rules and output length (number of tokens) for WMT FR!
EN dataset and FLAN-T5 Base Model.Chow-Sum tends to defer longer prompts: the prompts with
lowest scores have notably higher length than those with higher scores. Interestingly,Chow-Average
over-corrects this bias: it tends to overly defer prompts withlower length.Chow-Quantile-0 again
defers longer outputs more whereasChow-Quantile-0.8 initially focuses more on the shorter out-
puts. Oracle refers to deferring using the difference of BLEURT scores of the two models. Oracle
also tends to defer longer outputs, but the preference is moderate as compared toChow-Sum. (b) Cor-
responding deferral curves.(c) Analysis of token-level uncertainty on WMT FR! EN. For each
token indexi , the corresponding average prediction probability across all examples (with prediction
length� i) for FLAN-T5 Base. We observe that later tokens tend to have higher probability, i.e.,
the model is generally the most uncertain for early tokens.

For the Australian Government, Keith
Brown called Mr. Carmichael "unjustly"
to support the inclusion of the Ecosse in
the HS2.net network. ?? ?? ?? ?? ??
?? ?? ?? ??

The announcement of the release of a new
album by David Bowie has left everyone a
little bit a little a little a little a
little a little bit a little bit a little
bit a little bit

The lyric Ad �ero, a concert-recording held
last August, was added to the repertoire,
with the competition of the coloratura
soprano Marie- ?? ve Munger. The lyric
Ad�ero was added to the repertoire in
August. The lyric Ad �ero was added to the
repertoire in August.

"The Emergency Room at the Hotel-Dieu must
be closed as soon as possible, and for us,
it is November 4th," says Lo ?? c Capron,
Chairperson of the APHP Medical Committee
(MCM), who supports the direction.

Obama lays out his reform plan A memorial ceremony for the victims

Figure 5: FLAN-T5 Base predictions on WMT FR! EN.Top: Predictions with the longest lengths.
These tend to have repetitions, indicating low quality output that could be resolved with a larger
model; length does have some signal in identi�cation of good candidates for deferral.Middle: The
predictions whichChow-Quantile-0 tends to defer. This quantile tends to identify repetitions and
“??” (unknown tokens) as these tokens tend to have lower probability.Bottom: The predictions
which Chow-Quantile-0.8 tends to defer. This quantile prioritizes deferring shorter inputs.

Why can Chow-Sum and Chow-Average be sub-optimal?To better understand the reason for
the sub-optimality ofChow-Sum, Figure 4 studies the relation between the deferral rule and output
length. Speci�cally, for each test promptx , let ŷ denote the result of decoding via the small model
in the cascade. For each deferral rule, we compute the corresponding scores(x) and the lengthjŷ j.
For ease of comparison across different rules, we convert each score into the corresponding quantile.

Figure 4 reveals thatChow-Sum tends to defer prompts with larger output lengths: the prompts with
lowest scores have notably higher output length than those with higher scores. This makes us ask if
it is all bad to defer prompts with longer outputs? We observe that for the Base model on the WMT
datasets, even the BLEURT (Sellam et al., 2020) scores tend to have a non-zero negative correlation
with output lengths (Table 3, Appendix). A closer look at the model predictions shows that longer
predictions tend to have repetitions, as shown in Figure 5 (Top) and hence, are good candidates for
deferral. (The shown predictions are truncated for clarity.)

This shows that there is some signal in output length as a deferral score. However,Chow-Sum is
overly biased towards deferring longer predictions and hence, can be sub-optimal. Interestingly,
Chow-Average over-corrects this bias: it tends to overly defer prompts withlower output length.

7

Published as a conference paper at ICLR 2024

Why does Chow-Quantile help?As discussed above,Chow-Quantile is able to capture rich in-
formation from the token-level uncertainty vector. We discuss below whyChow-Quantile-0 and
Chow-Quantile-0.8 work well with respect to the WMT FR! EN dataset.

Chow-Quantile-0 : The main insight is that the minimum token probability is able to capture repe-
titions and “??” (unknown tokens), as they generally tend to have lower probability values and are
more uncertain. This con�rms our understanding that quantiles can capture richer token-level uncer-
tainty. We show two examples with the minimumChow-Quantile-0 value for the WMT FR! EN
dataset and FLAN-T5 Base in Figure 5 (Middle).

Chow-Quantile-0.8 : Interestingly,Chow-Quantile-0.8 tends to defer shorter predictions. We show
two examples with the minimumChow-Quantile-0.8 value in Figure 5 (Bottom).

To understand this, Figure 4c shows the average token probability as a function of the token in-
dex, for the WMT EN! FR dataset and FLAN-T5 Base model. As the token index increases,
the average probability increases; i.e., the model tends to become more con�dent. Hence, the
Chow-Quantile-0.8 is able to focus more on the shorter, uncertain outputs.

In summary, we have seen thatChow-Quantile-0 is able to focus more on identifying the presence of
repetitions and unknown tokens “??” whereasChow-Quantile-0.8 is able to capture the uncertainty
in shorter predictions better. Thus, we conclude that different quantiles are able to capture richer
and complementary measures of uncertainty. Moreover, we have already seen that there is no one
quantile which works well across all datasets. Given this, a natural option is to learn how to combine
various quantiles for a given dataset, which we consider next.

4 POST-HOC DEFERRAL RULES

We show that trainingpost-hocdeferral rules based on probability quantiles, and (optionally) suit-
able embeddings from the small and large model, can signi�cantly improve the cost-quality tradeoff.

4.1 POST-HOC DEFERRAL RULE TRAINING

The idea of learning when to defer in a cascade follows a recent line of work on classi�ca-
tion (Narasimhan et al., 2022; Kag et al., 2023; Jitkrittum et al., 2023). In a nutshell, for suitable
feature mapping�(x) 2 Rd, we seek to learn a deferral scores(x) 2 R via a standard model class
(e.g., a feedforward network). We then defer usingr (x) = 1(s(x) < t).

To construct the input features, we set�(x) to be a �xed length vector comprising the per-
token probability quantiles from the small model. Additionally, we add the aggregate scores from
Chow-Sum andChow-Average (see Appendix F). To �t the deferral scorer on a training set of input
promptsf x i g, we minimize an empirical loss against a set of target labelsf zi g. For tasks based on
accuracy, we setzi = 1 iff the large model is correct, and the small model is incorrect on the given
example; i.e., it would bene�t to defer to the larger model. We then �t the scorer with the binary
logistic loss. For translation tasks, the target is the difference of BLEURT scores of the two models;
we train with the square loss. We call this methodPost-Hoc-Quantile (see Appendix D for details).

4.2 LEVERAGING INTERMEDIATE EMBEDDINGS

The above target labels exploit information from the large model duringtraining. Importantly, we
cannot directly use such information duringinference, as it would require querying the large model
(and thus defeat the point of cascading). Note, however, that in some settings it may be feasible to use
intermediateinformation from the large model, e.g., token embeddings from an intermediate layer.
Prior work has noted that such intermediate embeddings can often contain valuable information by
themselves (Schuster et al., 2022).

Inspired by this, we thus study the viability of using such intermediate embeddings for training post-
hoc deferral rules. For encoder-decoder models such as T5, such embeddings can be from either the
encoder, decoder, or both. We study two methods - one which uses the �nal decoder embeddings of
the smaller model averaged over all tokens. We call this methodPost-Hoc-Embed-1 . In the second
method, we add the �rst token embedding from the �rst decoder layer of the large model as another
input to the post-hoc rule. We call this methodPost-Hoc-Embed-1+2 .

8

	Introduction
	Background and Problem Setup
	Confidence Measures for Language Model Cascades
	Chow-Sum and Chow-Average
	Limitations of Chow-Sum and Chow-Average
	Beyond Chow-Sum and Chow-Average: Chow-Quantile
	Experimental Setup
	Evaluating Confidence Measures for Cascades

	Post-hoc Deferral Rules
	Post-hoc deferral rule training
	Leveraging intermediate embeddings
	How well does post-hoc deferral work?

	Discussion and Future Work
	Limitations
	Uncertainty Quantification for LMs
	Experimental Details
	Additional experimental results
	Ablations with Probability vectors as features
	Output length and BLEURT correlation
	Additional results for various models and datasets
	Different version of length plot
	Cascade curves with Relative Latency
	Results with Encoder and Decoder embeddings
	Results with Beam Search Decoding
	Performance of methods in predicting golden deferral label

	How is () computed?

