Matrix Approximations

Sanjiv Kumar, Google Research, NY EECS-6898, Columbia University - Fall, 2010

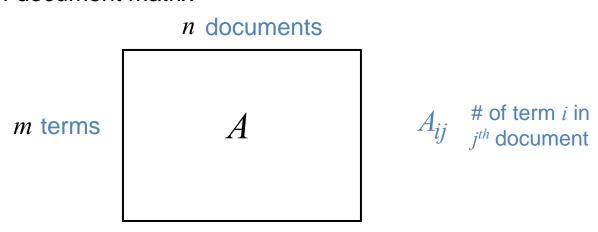
Sanjiv Kumar

Latent Semantic Indexing (LSI)

Given n documents with words from a vocabulary of size m, discover hidden topics and represent documents semantically.

Process

form a term-document matrix



- top k left singular vectors represent topics
- transform input query in the k-dim semantic space
- match against the semantically transformed database items

 $n \sim O(B), m \sim O(100K)$ Large sparse/dense matrix

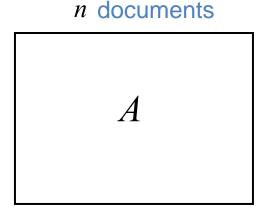
Latent Semantic Indexing (LSI)

Given n documents with words from a vocabulary of size m, discover hidden topics and represent documents semantically.

Document representation and retrieval

$$A \approx U_k \Sigma_k V_k^T$$

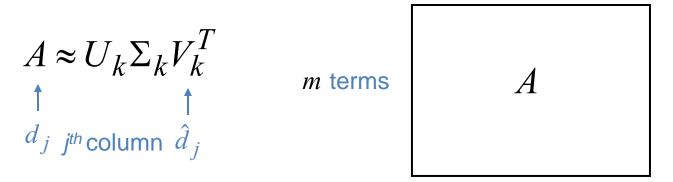
m terms



Latent Semantic Indexing (LSI)

Given n documents with words from a vocabulary of size m, discover hidden topics and represent documents semantically.

Document representation and retrieval



n documents

$$d_{j} \approx U_{k} \Sigma_{k} \hat{d}_{j} \quad \Longrightarrow \quad \hat{d}_{j} \approx \Sigma_{k}^{-1} U_{k}^{T} d_{j}$$
 Given a query q $\hat{q} \approx \Sigma_{k}^{-1} U_{k}^{T} q$

Find the nearest neighbors from database using $sim(\hat{q},\hat{d}_i)$

Sanjiv Kumar

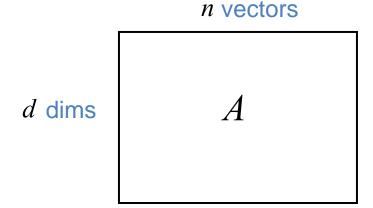
Principal Component Analysis (PCA)

Given *n* vectors, find the linear reconstruction with minimum mean squared error.

Process

Sanjiv Kumar

form the centered data matrix (i.e. subtract mean from each vector)



- get the top k left singular vectors (equivalent to eigenvectors of covariance matrix)
- project the input data on the singular vectors

 $n \sim O(B)$, $d \sim O(100K)$ Large dense matrix

Kernel Methods

Commonly used for nonlinear extensions in classification, regression, dimensionality reduction etc.

Kernel Matrix

Most kernel methods boil down to manipulation of kernel matrix

$$K = \begin{bmatrix} k(x_i, x_j) & n \end{bmatrix}$$

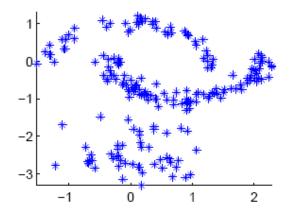
- Symmetric Positive Semi-Definite (SPSD) matrix of size $n \times n$
- Get top/bottom eigenvectors (eg., kernel PCA) or low-rank approximation (SVM)

 $n \sim O(B)$ Very large dense matrix

Spectral Clustering

Graph-based clustering method

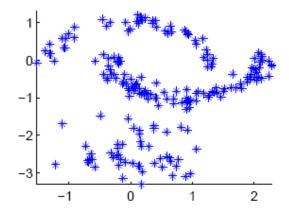
Less assumptions on data distribution than parametric model e.g.,GMM



Spectral Clustering

Graph-based clustering method

Less assumptions on data distribution than parametric model e.g.,GMM



Key Idea: Find a (low) k-dim embedding such that neighbors remain close

$$\hat{Y} = Arg \min_{Y} \sum_{i,j} W_{ij} \| y_i - y_j \|_2^2 = Arg \min_{Y} Y^T LY$$

Solution: Find bottom k eigenvectors of L (ignoring last)

assuming graph is connected

Spectral Clustering

Graph-based clustering method

Less assumptions on data distribution than parametric model e.g., GMM

Procedure:

Sanjiv Kumar

Compute weight matrix W:

$$W_{ij} = \exp(-\|x_i - x_j\|^2 / \sigma^2) \quad \text{or} \quad W_{ij} = \begin{cases} \exp(-\|x_i - x_j\|^2 / \sigma^2) & \text{if } i \sim j \\ 0 & \text{otherwise} \end{cases}$$
Dense

Sparse

Compute normalized Laplacian

$$A = I - D^{-1/2}WD^{-1/2} \qquad \text{or} \qquad A = I - D^{-1}W$$

$$\text{Symmetric} \qquad \qquad \text{Asymmetric} \qquad \qquad D_{ii} = \sum_{j} W_{ij}$$

Do a k-means clustering in optimal k reduced dims of A: $D^{1/2}U_k$ or U_k

Bottom eigenvectors of A, ignoring last

 $n \sim O(B)$, $d \sim O(100K)$ Large dense or sparse matrix

Two scenarios

Dense Matrices

- 1. Number of elements $O(n^2)$
- 2. Matrix-vector products $O(n^2)$
- 3. Spectrum usually falls exponentially for most real-world data
 - Most energy contained in top few eigenvalues
 - Low-rank approximation gives reasonable results
- 4. Commonly arise in kernel methods, regression, manifold learning, second order optimization (hessian)

Sparse Matrices

Sanjiv Kumar

- 1. Number of elements O(n)
- 2. Very fast matrix-vector products O(n)
- 3. Spectrum is usually flatter (energy falls more slowly)
- 4. Commonly arise in spectral clustering, manifold learning, semisupervised learning

EECS6898 – Large Scale Machine Learning

Given a matrix A of rank $k < \min(m, n)$

$$\begin{array}{cccc}
A = B & C \\
 m \times n & m \times k & k \times n
\end{array}$$

Given a matrix A of rank $k < \min(m, n)$

$$A = B C$$
 $m \times n \quad m \times k \quad k \times n$

Advantages

Sanjiv Kumar

- Commonly used to discover structure in data i.e., Latent Semantic Indexing (LSI) e.g., discovering topics in documents or Recommendation system e.g., predicting user preferences
- Storage reduces to only O((m+n)k) instead of O(mn)
- Matrix-vector product requires only O((m+n)k) instead of O(mn)

$$A = U_A \sum_A V_A^T$$

$$[m \times n] \quad [m \times n] \quad [n \times n] \quad [n \times n]$$

EECS6898 – Large Scale Machine Learning

$$A = U_A \sum_A V_A^T$$

$$[m \times n] \quad [n \times n] \quad [n \times n] \quad [n \times n]$$

wlog suppose m > n

Left singular vectors

$$U_A^T U_A = I$$

Eigenvectors of AA^T

$$A = U_A \sum_{A} V_A^T$$

$$[m \times n] \quad [m \times n] \quad [n \times n] \quad [n \times n]$$

wlog suppose m > n

$$[m \times n]$$
 $[m \times n]$ $[n \times n]$ $[n \times n]$

Left singular vectors

$$U_A^T U_A = I$$

Eigenvectors of AA^T

Right singular vectors

$$V_A^T V_A = I$$

Eigenvectors of $A^T A$

$$A = U_A \sum_{A} V_A^T$$

wlog suppose m > n

Left singular vectors

$$U_A^T U_A = I$$

Eigenvectors of AA^T

Right singular vectors

$$V_A^T V_A = I$$

Eigenvectors of $A^T A$

$$\operatorname{diag}(\sigma_1,...,\sigma_n)$$

$$\sigma_1 \ge \dots \ge \sigma_n \ge 0$$

 σ_i^2 are eigenvalues of $A^T A$ or AA^T

Frobenius Norm
$$\|A\|_F^2 = \sum_{i,j} A_{ij}^2 = Tr(A^TA) = Tr(AA^T) = \sum_i \sigma_i^2$$

Spectral Norm $\|A\|_2 = \max_{x \neq 0} \|Ax\|_2 / \|x\|_2 = \sigma_1$ $\|A\|_2 \leq \|A\|_F \leq \sqrt{n} \|A\|_2$

Frobenius Norm
$$\|A\|_F^2 = \sum\limits_{i,j} A_{ij}^2 = Tr(A^TA) = Tr(AA^T) = \sum\limits_{i} \sigma_i^2$$

Spectral Norm $\|A\|_2 = \max\limits_{x \neq 0} \|Ax\|_2 / \|x\|_2 = \sigma_1$ $\|A\|_2 \leq \|A\|_F \leq \sqrt{n} \|A\|_2$
 $A_k = \underset{D}{Arg \min} \|A - D\|_{F,2} \quad rank(D) = k$
 $A \approx A_k = U_k \sum\limits_{m \times k} V_k^T$
 $M \approx A_k = U_k \sum\limits_{m \times k} V_k^T$

Frobenius Norm
$$\|A\|_F^2 = \sum\limits_{i,j} A_{ij}^2 = Tr(A^TA) = Tr(AA^T) = \sum\limits_{i} \sigma_i^2$$

Spectral Norm $\|A\|_2 = \max\limits_{x \neq 0} \|Ax\|_2 / \|x\|_2 = \sigma_1$ $\|A\|_2 \leq \|A\|_F \leq \sqrt{n} \|A\|_2$
 $A_k = \underset{D}{Arg \min} \|A - D\|_{F,2} \quad rank(D) = k$
 $A \approx A_k = U_k \sum\limits_{m \times k} V_k^T$
 $M \approx A_k = U_k \sum\limits_{m \times k} V_k^T$

Removing small entries in Σ has noise-removal interpretation e.g., PCA

Computational Complexity

full SVD
$$O(mn \min\{m, n\})$$

rank- k SVD $O(mnk)$

Matrix Projection

$$A_k = U_k \sum_k V_k^T = U_k U_k^T A = A V_k V_k^T$$

EECS6898 - Large Scale Machine Learning

Matrix Projection

$$A_k = U_k \sum_k V_k^T = U_k U_k^T A = A V_k V_k^T$$
 Projection of A on space spanned by columns of U_k

EECS6898 - Large Scale Machine Learning

Matrix Projection

$$A_k = U_k \sum_k V_k^T = U_k U_k^T A = A V_k V_k^T$$
 Projection of A on space spanned by columns of U_k

$$\widetilde{A}_k = \widetilde{U}_k \, \widetilde{\sum}_k \, \widetilde{V}_k^T \neq \widetilde{U}_k \widetilde{U}_k^T A \neq A \, \widetilde{V}_k \, \widetilde{V}_k^T$$

For approximate decomposition, low-rank approximation using SVD and matrix projection give different results!

Sanjiv Kumar

Power Method

To compute the largest eigenvalue/eigenvector of a matrix

Assume A is a symmetric matrix, i.e. it is diagonalizable with,

$$U^{-1}AU = diag(\lambda_1, \lambda_2, ..., \lambda_n)$$
$$|\lambda_1| \ge |\lambda_2| \ge ... \ge |\lambda_n|$$

EECS6898 - Large Scale Machine Learning

Power Method

To compute the largest eigenvalue/eigenvector of a matrix

Assume A is a symmetric matrix, i.e. it is diagonalizable with,

$$U^{-1}AU = diag(\lambda_1, \lambda_2, ..., \lambda_n)$$
$$|\lambda_1| \ge |\lambda_2| \ge ... \ge |\lambda_n|$$

Power iteration

- 1. Start with random vector $q_0 \in \mathfrak{R}^n$
- 2. for k = 1, 2, ..., K $q_k = Aq_{k-1}$ repeated matrix-vector product
- 3. Normalize and compute eigenvalue

$$z_K = q_K / ||q_K||_2$$
$$\lambda_K = z_K^T A z_K$$

Convergence properties

Suppose,
$$q_0 = a_1u_1 + a_2u_2 + ... + a_nu_n$$
 Since columns of U make a basis in R^n
$$A^kq_0 = a_1\lambda_1^ku_1 + a_2\lambda_2^ku_2 + ... + a_n\lambda_n^ku_n$$
 Since $Au_i = \lambda u_i \Rightarrow A^ku_i = \lambda^ku_i$

EECS6898 - Large Scale Machine Learning

Convergence properties

Suppose,
$$q_0 = a_1u_1 + a_2u_2 + ... + a_nu_n$$
 Since columns of U make a basis in \mathbb{R}^n
$$A^k q_0 = a_1\lambda_1^k u_1 + a_2\lambda_2^k u_2 + ... + a_n\lambda_n^k u_n$$
 Since $Au_i = \lambda u_i \Rightarrow A^k u_i = \lambda^k u_i$ if $a_1 \neq 0$
$$A^k q_0 = a_1\lambda_1^k \left(u_1 + \sum_{j=2}^n \frac{a_j}{a_1} \left(\frac{\lambda_j}{\lambda_1}\right)^k u_j\right)$$

$$dist(q_k, u_1) = O(|\lambda_2/\lambda_1|^k)$$

Convergence properties

Suppose,
$$q_0 = a_1u_1 + a_2u_2 + ... + a_nu_n$$
 Since columns of U make a basis in R^n
$$A^kq_0 = a_1\lambda_1^ku_1 + a_2\lambda_2^ku_2 + ... + a_n\lambda_n^ku_n$$
 Since $Au_i = \lambda u_i \Rightarrow A^ku_i = \lambda^ku_i$

if
$$a_1 \neq 0$$

$$A^k q_0 = a_1 \lambda_1^k \left(u_1 + \sum_{j=2}^n \frac{a_j}{a_1} \left(\frac{\lambda_j}{\lambda_1} \right)^k u_j \right)$$

$$dist(q_k, u_1) = O(|\lambda_2/\lambda_1|^k)$$

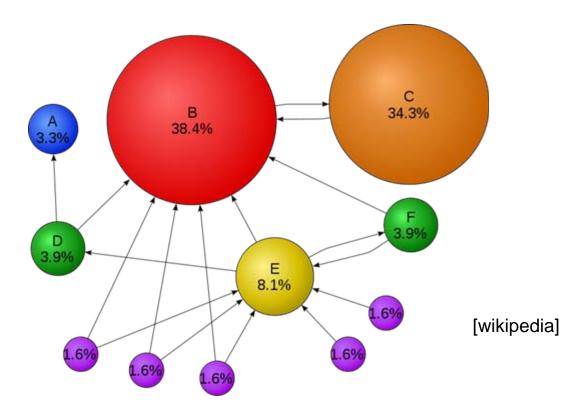
easy to satisfy by random initialization

Sanjiv Kumar

bigger gap leads to faster convergence

Can be generalized to multiple eigenvectors simultaneously by Orthogonal Iteration via QR-decomposition!

Which document or link is more "popular" independent of the query?



Random walk over pages

If one randomly clicks the links then what is the probability that one will be at page B?

Sanjiv Kumar

Stationary probability distribution over pages

Adjacency matrix
$$[A]_{n \times n}$$
 Transition matrix $[T]_{n \times n}$
$$A_{ij} = \begin{cases} 1 & \text{if } i \to j \\ 0 & \text{otherwise} \end{cases}$$

$$T_{ij} = \begin{cases} p(j \mid i) & \text{if } i \to j \\ 0 & \text{otherwise} \end{cases}$$

EECS6898 - Large Scale Machine Learning

Transition matrix is stochastic, i.e., rows sum to 1

Stationary probability distribution over pages

Adjacency matrix
$$[A]_{n \times n}$$
 Transition matrix $[T]_{n \times n}$
$$A_{ij} = \begin{cases} 1 & \text{if } i \to j \\ 0 & \text{otherwise} \end{cases}$$

$$T_{ij} = \begin{cases} p(j \mid i) & \text{if } i \to j \\ 0 & \text{otherwise} \end{cases}$$

Transition matrix is stochastic, i.e., rows sum to 1

Stationary Probability distribution given by the eigenvector corresponding to largest eigenvalue (i.e. 1) of T $u = T^T u$

EECS6898 – Large Scale Machine Learning

Stationary probability distribution over pages

Adjacency matrix
$$[A]_{n \times n}$$
 Transition matrix $[T]_{n \times n}$
$$A_{ij} = \begin{cases} 1 & \text{if } i \to j \\ 0 & \text{otherwise} \end{cases}$$

$$T_{ij} = \begin{cases} p(j \mid i) & \text{if } i \to j \\ 0 & \text{otherwise} \end{cases}$$

Transition matrix is stochastic, i.e., rows sum to 1

Stationary Probability distribution given by the eigenvector corresponding to largest eigenvalue (i.e. 1) of $T \mid u = T^T u$

Power Iteration
$$u_k = \left(T^T\right)^k u_0$$

Damping is used to make sure graph connected

$$u_{k+1} = \alpha T^T u_k + (1-\alpha)(1/n) 1$$
n-vector of 1's

Sanjiv Kumar

A technique to solve large sparse symmetric eigenproblems

Useful when only top or bottom few eigenvalues/vectors are needed

EECS6898 - Large Scale Machine Learning

Generates a sequence of tridiagonal matrices whose extremal eigenvalues progressively better estimates of desired values

A technique to solve large sparse symmetric eigenproblems

- Useful when only top or bottom few eigenvalues/vectors are needed
- Generates a sequence of tridiagonal matrices whose extremal eigenvalues progressively better estimates of desired values

Krylov Subspaces

$$K(A, q_1, k) = span\{q_1, Aq_1, ..., A^{k-1}q_1\}$$

A technique to solve large sparse symmetric eigenproblems

- Useful when only top or bottom few eigenvalues/vectors are needed
- Generates a sequence of tridiagonal matrices whose extremal eigenvalues progressively better estimates of desired values

Krylov Subspaces

$$K(A, q_1, k) = span\{q_1, Aq_1, ..., A^{k-1}q_1\}$$

Key Idea

Sanjiv Kumar

Successively generate a new orthonormal vector such that

$$span\{q_1, q_2, ..., q_{k+1}\} = span\{q_1, Aq_1, ..., A^kq_1\}$$

How to find
$$\{q_1, q_2, ..., q_{k+1}\}$$

Why Tridiagonalization

For any symmetric matrix A: $Q^T A Q = T$

Where Q is $n \times n$ orthogonal matrix and T is a tridiagonal matrix

$$T = \begin{bmatrix} \alpha_1 & \beta_1 \\ \beta_1 & \alpha_2 & \beta_2 \\ & \beta_2 & \alpha_3 & \beta_3 \\ \vdots & & & \\ \vdots & & & & \\ & \beta_{n-1} & \alpha_n \end{bmatrix}$$

Why Tridiagonalization

For any symmetric matrix A: $Q^T A Q = T$

Where Q is $n \times n$ orthogonal matrix and T is a tridiagonal matrix

$$e_k = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} \longleftarrow k^{th}$$

$$AQ = QT$$

$$e_k = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} \leftarrow k^{th}$$

$$let \quad Q = [q_1 \ q_2 \dots q_n]$$

$$q_1 = Qe_1$$

$$T = \begin{bmatrix} \alpha_1 & \beta_1 & & & \\ \beta_1 & \alpha_2 & \beta_2 & & & \\ & \beta_2 & \alpha_3 & \beta_3 & & \\ \vdots & & & & \\ & \vdots & & & & \\ & \beta_{n-1} & \alpha_n \end{bmatrix}$$

Why Tridiagonalization

For any symmetric matrix *A*: $Q^T A Q = T$

Where Q is $n \times n$ orthogonal matrix and T is a tridiagonal matrix

$$AQ = QT$$

$$e_k = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} \leftarrow k^{th}$$

$$let Q = [q_1 \ q_2 \dots q_n]$$

$$q_1 = Qe_1$$

$$T = \begin{bmatrix} \alpha_1 \ \beta_1 \\ \beta_1 \ \alpha_2 \ \beta_2 \\ \beta_2 \ \alpha_3 \ \beta_3 \\ \vdots \\ \vdots \\ \beta_{n-1} \ \alpha_n \end{bmatrix}$$

Krylov Matrix
$$K_m(A, q_1, n) = [q_1 \ Aq_1 \dots A^{n-1}q_1]$$

$$= Q[e_1 \ Te_1 \ T^2e_1 \dots T^{n-1}e_1]^R$$

Columns of Q form orthogonal bases for Krylov Matrix!

Sanjiv Kumar

Construct partial *Q* and partial *T* iteratively

$$AQ = QT$$

Let's focus on k^{th} column of Q

$$Aq_{k} = \beta_{k-1}q_{k-1} + \alpha_{k}q_{k} + \beta_{k}q_{k+1}$$

$$\beta_{k}q_{k+1} = (A - \alpha_{k}I)q_{k} - \beta_{k-1}q_{k-1} \equiv r_{k}$$
if $r_{k} \neq 0$ $q_{k+1} = r_{k} / \beta_{k}$ where $\beta_{k} = ||r_{k}||_{2}$

$$T = \begin{bmatrix} \alpha_1 & \beta_1 \\ \beta_1 & \alpha_2 & \beta_2 \\ & \beta_2 & \alpha_3 & \beta_3 \\ \vdots & & & \\ \vdots & & & & \\ & \beta_{n-1} & \alpha_n \end{bmatrix}$$

Construct partial *Q* and partial *T* iteratively

$$AQ = QT$$

Let's focus on k^{th} column of Q

$$Aq_{k} = \beta_{k-1}q_{k-1} + \alpha_{k}q_{k} + \beta_{k}q_{k+1}$$

$$\beta_k q_{k+1} = (A - \alpha_k I)q_k - \beta_{k-1}q_{k-1} \equiv r_k$$

if
$$r_k \neq 0$$
 $q_{k+1} = r_k / \beta_k$ where $\beta_k = ||r_k||_2$

$$r_0 = q_1, \beta_0 = 1, k = 1,...$$

while $(\beta_k \neq 0)$

$$q_k = r_{k-1} / \beta_{k-1}$$

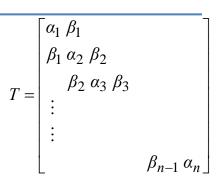
$$-\alpha_k = q_k^I A q_k$$

 $\alpha_k = q_k^T A q_k \qquad \text{using orthormality of } q's$

Need matrix-vector
$$\alpha_k = q_k A q_k$$
 using orthoproduct Aq_k using orthoproduct Aq_k

$$\beta_k = ||r_k||_2$$

Sanjiv Kumar



premultiply by

When to stop?

- Ideally until k = rank of Krylov matrix
- Usually too long, so a threshold is used on residual

$$AQ_k = Q_k T_k + r_k e_k^T$$

EECS6898 - Large Scale Machine Learning

Decompose T_k $S_k^T T_k S_k = diag(\theta_1,...,\theta_k)$

When to stop?

- Ideally until k = rank of Krylov matrix
- Usually too long, so a threshold is used on residual

$$AQ_k = Q_k T_k + r_k e_k^T$$

- Decompose
$$T_k$$
 $S_k^T T_k S_k = diag(\theta_1, ..., \theta_k)$ $O(k)$

estimated eigenvectors of A: Q_kS_k estimated eigenvalues of A

When to stop?

- Ideally until k = rank of Krylov matrix
- Usually too long, so a threshold is used on residual

$$AQ_k = Q_k T_k + r_k e_k^T$$

Decompose T_k $S_k^T T_k S_k = diag(\theta_1,...,\theta_k)$

estimated eigenvectors of A: $Q_k S_k$

estimated eigenvalues of A

$$\begin{aligned} & \min_{\mu \in \lambda(A)} \left| \theta_i - \mu \right| \leq \left| \beta_k \right| |s_{ki}| \\ & \text{Convergence} \\ & \lambda_1 \geq \theta_1 \geq \lambda_1 - (\lambda_1 - \lambda_n) \tan(\varphi_1)^2 / (c_{k-1}(1+2\rho_1))^2 \\ & \text{Kaniel-Page Theory} \end{aligned} \\ & \cos(\varphi_1) = \left| q_1^T u_1 \right| \end{aligned} \quad \begin{aligned} & \text{Chebyshev polynomial} \\ & \rho = (\lambda_1 - \lambda_2) / (\lambda_1 - \lambda_n) \end{aligned}$$

top eigenvector of A

42

When to stop?

- Ideally until k = rank of Krylov matrix
- Usually too long, so a threshold is used on residual

$$AQ_k = Q_k T_k + r_k e_k^T$$

- Decompose T_k $S_k^T T_k S_k = diag(\theta_1, ..., \theta_k)$

estimated eigenvectors of $A: Q_k S_k$

estimated eigenvalues of A

Accuracy
$$\min_{\mu \in \lambda(A)} |\theta_i - \mu| \le |\beta_k| |s_{ki}|$$

Convergence

Kaniel-Page Theory

$$\lambda_1 \ge \theta_1 \ge \lambda_1 - (\lambda_1 - \lambda_n) \tan(\varphi_1)^2 / (c_{k-1}(1 + 2\rho_1))^2$$

$$\cos(\varphi_1) = \left| q_1^T u_1 \right|$$

Chebyshev polynomial

top eigenvector of A

Lanczos iterations converge faster than power iteration!

Practical
Implementation:
Avoid rounding
errors

Arnoldi's Method

A technique to solve large sparse asymmetric eigenproblems

Generates a sequence of Hessenberg matrices with extremal eigenvalues progressively better estimates

EECS6898 – Large Scale Machine Learning

$$Q^{T} A Q = H \implies AQ = QH$$

$$Aq_{k} = \sum_{i=1}^{k+1} h_{ik} q_{i} \implies r_{k} = Aq_{k} - \sum_{i=1}^{k} h_{ik} q_{i}$$
full

Arnoldi's Method

A technique to solve large sparse asymmetric eigenproblems

Generates a sequence of Hessenberg matrices with extremal eigenvalues progressively better estimates

$$Q^{T} A Q = H \longrightarrow AQ = QH$$

$$Aq_{k} = \sum_{i=1}^{k+1} h_{ik} q_{i} \longrightarrow r_{k} = Aq_{k} - \sum_{i=1}^{k} h_{ik} q_{i}$$

$$Q^{T} A Q = H \longrightarrow AQ = QH$$

$$Aq_{k} = \sum_{i=1}^{k+1} h_{ik} q_{i} \longrightarrow r_{k} = Aq_{k} - \sum_{i=1}^{k} h_{ik} q_{i}$$

if
$$h_{k+1,k} \neq 0$$
 $q_{k+1} = r_k / h_{k+1,k}$ $h_{k+1,k} = ||r_k||_2$

After *k* steps

Sanjiv Kumar

$$AQ_{k} = Q_{k}H_{k} + r_{k}e_{k}^{T}$$

$$H_{k}y = \lambda y \longrightarrow O(k^{2})$$

$$(A - \lambda I)Q_{k}y = (e_{k}^{T}y)r_{k}$$
ritz value

In practice, applied with multiple restarts!

Randomized SVD and low-rank approx

Basic Problem

oversampling

Given an $m \times n$ matrix A, and an integer l = k + (p) find an $m \times l$ orthonormal matrix Q such that

$$A \approx Q Q^T A \qquad \qquad l << m, n$$

$$m \times n \quad m \times l$$

EECS6898 - Large Scale Machine Learning

The columns of *Q* form orthonormal basis for the range of *A*

Randomized SVD and low-rank approx

Basic Problem

oversampling

Given an $m \times n$ matrix A, and an integer l = k + p, find an $m \times l$ orthonormal matrix Q such that

$$A \approx Q Q^T A \qquad \qquad l << m, n$$

$$m \times n \quad m \times l$$

The columns of *Q* form orthonormal basis for the range of *A*

How to do SVD?

1. Form a small
$$(l \times n)$$
 matrix: $B = Q^T A$ $O(mnl)$

2. Compute SVD of *B*:
$$B = \hat{U} \Sigma V^T$$
 $O(nl^2)$

3. Set
$$U = Q\hat{U}$$

$$O(ml^2)$$

Of course, the best Q is: $Q = U_1$ Expensive!

How to build approximate Q?

Basic Problem

Given an $m \times n$ matrix A, and an integer l, find an $m \times l$ orthonormal matrix Q such that $A \approx Q Q^T A$

Procedure

Sanjiv Kumar

- 1. Draw random vectors from P(w) $w_1, w_2, ..., w_l \in \Re^n$
- 2. Form projected sample vectors $y_1 = Aw_1,...,y_l = Aw_l \in \Re^m$
- 3. Form orthonormal vectors $q_1, q_2, ..., q_l \in \mathbb{R}^m$

$$Span(q_1, q_2, ..., q_l) = Span(y_1, y_2, ..., y_l)$$
 Gram-Schmidt or QR

Basic Problem

Given an $m \times n$ matrix A, and an integer l, find an $m \times l$ orthonormal matrix Q such that $A \approx Q Q^T A$

Matrix-version

- 1. Construct a random matrix Ω_l of size $n \times l$ O(nl)
- 2. Form $m \times l$ sample matrix $Y_l = A \Omega_l$

most expensive! O(mnl)Use randomized FFT for $O(mn\log(l))$

3. Form an $m \times l$ orthonormal matrix Q_l such that $Y_l = Q_l Q_l^T Y_l + O(ml^2)$

EECS6898 - Large Scale Machine Learning

Basic Problem

Given an $m \times n$ matrix A, and an integer l, find an $m \times l$ orthonormal matrix Q such that $A \approx Q Q^T A$

Matrix-version

- 1. Construct a random matrix Ω_l of size $n \times l$ O(nl)
- 2. Form $m \times l$ sample matrix $Y_l = A \Omega_l$

most expensive!

Use randomized

FFT for $O(mn\log(l))$

3. Form an $m \times l$ orthonormal matrix Q_l such that $Y_l = Q_l Q_l^T Y_l$ $O(ml^2)$

Error in Approximation

$$\left\| A - Q Q^T A \right\|_2 \ge \sigma_{l+1}$$

$$\left\|A - Q_l Q_l^T A\right\|_2 \le \left[1 + 11\sqrt{k + p}.\sqrt{\min(m, n)}\right] \sigma_{k+1}$$
 with probability $1 - 6p^{-p}$

Matrices with slowly decaying spectrum

Basic Idea

Incorporate Krylov-space type power iteration

$$B = (AA^T)^q A$$
 \Longrightarrow same singular vectors as of A but fast decaying singular values

EECS6898 - Large Scale Machine Learning

Matrices with slowly decaying spectrum

Basic Idea

Incorporate Krylov-space type power iteration

$$B = (AA^T)^q A$$
 \Longrightarrow same singular vectors as of A but fast decaying singular values

Algorithm

- 1. Construct a random matrix Ω_l of size $n \times l$
- 2. Form $m \times l$ sample matrix $Z = (A A^T)^q A \Omega_l$
- 3. Form an $m \times l$ orthonormal matrix Q_l from Z using partial QR

EECS6898 – Large Scale Machine Learning

Matrices with slowly decaying spectrum

Basic Idea

Incorporate Krylov-space type power iteration

$$B = (AA^T)^q A$$
 \Longrightarrow same singular vectors as of A but fast decaying singular values

Algorithm

- 1. Construct a random matrix Ω_l of size $n \times l$
- 2. Form $m \times l$ sample matrix $Z = (A A^T)^q A \Omega_l$
- 3. Form an $m \times l$ orthonormal matrix Q_l from Z using partial QR

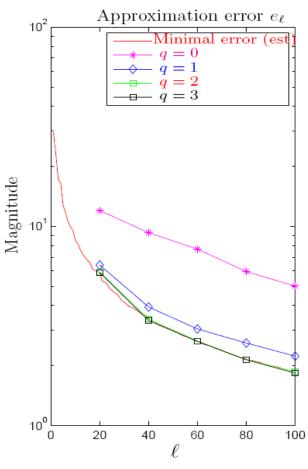
Error in Approximation

$$\|A - Q_l Q_l^T A\|_2 \le [1 + 11\sqrt{k + p}.\sqrt{\min(m, n)}]^{1/(2q+1)} \sigma_{k+1}$$
 with probability $1 - 6p^{-p}$

Randomized method: Example

Eigenfaces

$$m = 7254$$
 faces $n = 384 \times 256$ pixels



Advantages

- 1. Much faster than standard methods: $O(mn \log k)$ instead of O(mnk)
- 2. Need to look at data only very few times (sometimes single pass!)
- 3. Easy parallel implementation
- 4. The error in approximation can be made arbitrarily small with very high probability (even 10⁻¹⁰) inexpensively
- 5. Simple to code

Randomized Vs Sparse Methods

Randomized methods

Build the approximate range of A by multiplying A with a new random vector progressively

$$y_1 = Aw_1, ..., y_l = Aw_l$$

Sparse Methods

Build the approximate range of A by multiplying A recursively with the outcome of the previous stage starting with a random vector

$$y_1 = Aw_1, ..., y_l = Ay_{l-1}$$
 if *A* is square

Advantages of randomized method

- 1. Similar computational complexity
- 2. Can be parallelized
- 3. Provide better approximations even for small spectrum gaps
- 4. Can learn from very few (sometimes just one) passes over the data

Sanjiv Kumar

References

- Deerwester, S., et al, Improving Information Retrieval with Latent Semantic Indexing, Proceedings of the 51st Annual Meeting of the American Society for Information Science 25, 1988.
- 2. Ulrike Von Luxburg, A tutorial on spectral clustering, Tech Report, TR-149, Max-plank Institute.
- 3. Golub and Van Loan, Matrix Computations, Johns Hopkins Press, 1996.
- Sergey Brin, Larry Page (1998). "The Anatomy of a Large-Scale Hypertextual Web Search 4. Engine". Proceedings of the 7th international conference on World Wide Web (WWW). Brisbane, Australia. pp. 107-117.
- 5. A. Frieze, R. Kannan and S. Vempala, Fast Monte-Carlo Algorithms for finding low-rank approximations, Proceedings of the Foundations of Computer Science, 1998.
- 6. P. Drineas and R. Kannan, M. Mahoney, Fast Monte Carlo Algorithms for Matrices I: Approximating Matrix Multiplication, Tech-Report TR-1269.
- Halko, Martinsson, & Tropp, "Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions", ACM Report, 2009.

Sanjiv Kumar