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Latent Semantic Indexing (LSI)

Given n documents with words from a vocabulary of size m, discover
hidden topics and represent documents semantically.

Process
— form a term-document matrix
n documents

Aq.. # of term i in

m erms A ij j™" document

— top k left singular vectors represent topics

— transform input query in the k-dim semantic space

— match against the semantically transformed database items
n~ O(B), m ~ 0(1OOK) Large sparse/dense matrix
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Latent Semantic Indexing (LSI)

Given n documents with words from a vocabulary of size m, discover
hidden topics and represent documents semantically.

Document representation and retrieval
n documents

A= UkaVkT

m terms A
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Latent Semantic Indexing (LSI)

Given n documents with words from a vocabulary of size m, discover
hidden topics and represent documents semantically.

Document representation and retrieval
n documents

T
/TI ~ UkaVk m terms A

f

dj jtcolumn a’j

. A el T
dszkzkdj :>djzkukdj
Given a query ¢ ézzle]{q

Find the nearest neighbors from database using Sim (é, d])

Sanjiv Kumar 9/24/2010 EECS6898 — Large Scale Machine Learning



Principal Component Analysis (PCA)

Given n vectors, find the linear reconstruction with minimum mean
squared error.

Process
— form the centered data matrix (i.e. subtract mean from each vector)
n vectors
d dims A

— get the top k left singular vectors (equivalent to eigenvectors of
covariance matrix)

— project the input data on the singular vectors

n~Q0O(B), d~O(100K) Large dense matrix
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Kernel Methods

Commonly used for nonlinear extensions in classification, regression,
dimensionality reduction etc.

Kernel Matrix
— Most kernel methods boil down to manipulation of kernel matrix
n

K= k(x;x;) n

— Symmetric Positive Semi-Definite (SPSD) matrix of size n X n

— Get top/bottom eigenvectors (eg., kernel PCA) or low-rank
approximation (SVM)
n~ O(B) Very large dense matrix
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Spectral Clustering

Graph-based clustering method
e Less assumptions on data distribution than parametric model e.g.,GMM

Luxburg [2]

Sanjiv Kumar 9/24/2010 EECS6898 — Large Scale Machine Learning



Spectral Clustering

Graph-based clustering method
* Less assumptions on data distribution than parametric model e.g.,GMM

Key ldea: Find a (low) k-dim embedding such that neighbors remain close

N

Y = Argmin 2. W,
Y

2 o7
> Wy|vi=v;|, = Argminy” Ly
LJ

' Np_w

Solution: Find bottom k eigenvectors of L (ignoring last)
assuming graph is connected
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Spectral Clustering

Graph-based clustering method
* Less assumptions on data distribution than parametric model e.g.,GMM

Procedure:

e Compute weight matrix W ,
exp(—|x; —x;[ " /o%) ifi~

Wy =exp(-l [ 1o®) or W —{

0 otherwise

Dense
Sparse

 Compute normalized Laplacian

A=]_D2wp U2 o  A=] —-Dw

Symmetric Asymmetric Dii = Z]VVI

« Do a k-means clustering in optimal £ reduced dims of 4: D'2U, or U,

Bottom eigenvectors of A4, ignoring last

n~0(B), d~0O(l00K) Large dense or sparse matrix
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Two scenarios

Dense Matrices
1. Number of elements O(nz)
2. Matrix-vector products O(nz)

3. Spectrum usually falls exponentially for most real-world data
— Most energy contained in top few eigenvalues
— Low-rank approximation gives reasonable results

4. Commonly arise in kernel methods, regression, manifold learning,
second order optimization (hessian)

Sparse Matrices
1. Number of elements O(n)
2. Very fast matrix-vector products O(n)
3. Spectrum is usually flatter (energy falls more slowly)
4

. Commonly arise in spectral clustering, manifold learning, semi-
supervised learning
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Low-rank Approximation

Given a matrix 4 of rank k£ < min(m, n)

A=B C

mxn mxk kxn
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Low-rank Approximation

Given a matrix 4 of rank k < min(m,n)

A=B C

mxn mxk kxn

Advantages

— Commonly used to discover structure in data i.e., Latent Semantic
Indexing (LSI) e.g., discovering topics in documents or
Recommendation system e.g., predicting user preferences

— Storage reduces to only O((m + n)k)instead of O(mn)

— Matrix-vector product requires only O((m + n)k) instead of O(mn)
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Singular Value Decomposition (SVD)

A=U, 3,4V,

[mxn] [mxn] [nxn] [nxn]
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Singular Value Decomposition (SVD)

wlog suppose m > n [mxn} Tmxn] [nxn] [nxn]

Left singular vectors

Ulu =1

Eigenvectors of AA"
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Singular Value Decomposition (SVD)

wlog suppose m > n m/xnj/fmxn] [nxn] [nxn

Left singular vectors Right singular vectors
T
vlu , =1 viv,=1
Eigenvectors of 44" Eigenvectors of AT 4
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Singular Value Decomposition (SVD)

AZUAZAVAT

wlog suppose m > n V/rmxn] [nXn] [n x%]\

Left singular vectors Right singular vectors
T
vlu , =1 viv,=1
Eigenvectors of 44" | Eigenvectors of AT 4
diag(cy,....7,)

012..20,20
2

o, are eigenvalues of Al 4 or 447
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Low-rank Approximation

Frobenius Norm HAH; = ZA,; =Tr(A" 4)=Tr(44") =Y o}
i

L]
Spectral Norm || 4], = Tf())(HAxHZ/Mz =01
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Low-rank Approximation

Frobenius Norm HAH; = ZA; =Tr(A" 4) =Tr(44") =Y o}
i,j i
Spectral Norm | 4], = Tjg(HAxHZ/HxHZ =01 4], <|4] , <n|4],

Ak = Al”g minA—DF’Z rank(D) =k
D

Ar 4, =U, 3, V"

mxk kxk kxn

Sanjiv Kumar 9/24/2010 EECS6898 — Large Scale Machine Learning

18



Low-rank Approximation

Frobenius Norm HAH; = ZA,? =Tr(A" 4)=Tr(44") =Y o}
i

i,J
SpectalNom [l ~maxlasy =01 |l <4l <l
Ak = A?‘g minA—DF’Z rank(D) =k
D
T
A ~ Ak — Uk Zk Vk
mxn mxk kxk kxn

Removing small entries in X has noise-removal interpretation e.g., PCA
Computational Complexity
full SVD O(mnmin{m,n})
rank-k SVD O(mnk)
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Matrix Projection

A =Up o Vi =U U A=AVl
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Matrix Projection

Sanjiv Kumar

A =Up o Vi =U U A=AVl

9/24/2010

Y
Projection of A on

space spanned by
columns of U,

EECS6898 — Large Scale Machine Learning
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Matrix Projection

A =Up o Vi =U U A=AVl

Y
Projection of A on
space spanned by

columns of U,

Ak :UkaVkT ¢UkU£A¢AVkaT
For approximate decomposition, low-rank approximation

using SVD and matrix projection give different results !
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Power Method

To compute the largest eigenvalue/eigenvector of a matrix

Assume A is a symmetric matrix, i.e. it is diagonalizable with,
U AU =diag (X, 2,0 7))
> lig| > .22,
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Power Method

To compute the largest eigenvalue/eigenvector of a matrix

Assume A is a symmetric matrix, i.e. it is diagonalizable with,
U AU =diag (X, 2,0 7))
|22 2 A,
Power iteration

1. Start with random vector ¢g € R”

2. fork=1,2,...,K
qdi = Aqk_l repeated matrix-vector product

3. Normalize and compute eigenvalue
ZK = CIK/HQKHZ
lg = Z]];AZK
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Convergence properties

SUPPOSE, g4 = aquy + apuiy +...+ a,u,  Since columns of U make a basis in &

Akqo = ali]ful + aziguz +..+ aniﬁun
Since Alxll' = j«ul' — Akl/ll = j«kul
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Convergence properties

SUPPOSE, g4 = aquy + apuiy +...+ a,u,  Since columns of U make a basis in &

Akqo = ali]ful + aziguz +..+ aniﬁun
Since Al/ll' = jﬂ/ll' = Akul = jdkl/ll
If I # 0 i
n g A
k k J| 7
A q0 =Cl1},1 U+ Z Lij I/l]
j=2 4\ M

dist(qy ,uy) = O /2|
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Convergence properties

SUPPOSE, g4 = aquy + apuiy +...+ a,u,  Since columns of U make a basis in &

Akqo = alxllful + aleguz +...+ aniﬁun
Since Aui = /IMZ' — Akl/ll = /1k1/ll
If I # 0

k k noa( A ¢
A QO:alil Ml-l—z—— I/l]
2o\ A

. k
dist(qy.,u1) = O(A /[ 11]")

easy to satisfy by random
Initialization

bigger gap leads to faster
convergence

Can be generalized to multiple eigenvectors simultaneously by Orthogonal
Iteration via QR-decomposition !
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Page Rank

Which document or link is more “popular” independent of the query?

[wikipedia]

Random walk over pages

If one randomly clicks the links then what is the probability that
one will be at page B?
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Page Rank

Stationary probability distribution over pages

Adjacency matrix [A] Transition matrix [T]n

nxn Xn
L i) = o _[pUl) i
Y |0 otherwise Y70 otherwise

Transition matrix is stochastic, i.e., rows sum to 1

Sanjiv Kumar 9/24/2010 EECS6898 — Large Scale Machine Learning
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Page Rank

Stationary probability distribution over pages

Adjacency matrix [A] Transition matrix [T]n

nxn Xn
L i) = o _[pUl) i
Y |0 otherwise Y70 otherwise

Transition matrix is stochastic, i.e., rows sum to 1

Stationary Probability distribution given-hy the eigenvector corresponding
to largest eigenvalue (i.e. 1) of T |y =T" i
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Page Rank

Stationary probability distribution over pages

Adjacency matrix [A] Transition matrix [T]n

nxn Xn
L i) = o _[pUl) i
Y |0 otherwise Y70 otherwise

Transition matrix is stochastic, i.e., rows sum to 1

Stationary Probability distribution given-hy the eigenvector corresponding
to largest eigenvalue (i.e. 1) of T |y =T" i

Power lteration uj = (TTyc up

Damping is used to make sure graph connected
T
gy =oT" up +(1-a)l/n) L, n-vector of 1's
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Lanczos Method

A technique to solve large sparse symmetric eigenproblems
— Useful when only top or bottom few eigenvalues/vectors are needed

— Generates a sequence of tridiagonal matrices whose extremal
eigenvalues progressively better estimates of desired values

Sanjiv Kumar 9/24/2010 EECS6898 — Large Scale Machine Learning
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Lanczos Method

A technique to solve large sparse symmetric eigenproblems
— Useful when only top or bottom few eigenvalues/vectors are needed

— Generates a sequence of tridiagonal matrices whose extremal
eigenvalues progressively better estimates of desired values

Krylov Subspaces

-1
K (4,q1,k) = span{qy, Agy,..., A q,}
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Lanczos Method

A technique to solve large sparse symmetric eigenproblems
— Useful when only top or bottom few eigenvalues/vectors are needed

— Generates a sequence of tridiagonal matrices whose extremal
eigenvalues progressively better estimates of desired values

Krylov Subspaces

-1
K (4,q1,k) = span{qy, Agy,..., A q,}

Key Idea
— Successively generate a new orthonormal vector such that

k
spar{q, 92 .- qr41} = sparmiqy, Aqy,.... A" g1}

How to find {Cll,CIz,---,qu}
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Lanczos Method

Why Tridiagonalization
For any symmetric matrix 4: QTAQ =T

Where Q is n x n orthogonal matrix and 7'is a tridiagonal matrix

(g By |

Prog B
B2 a3 B3

ﬁn—l 0y
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Lanczos Method

Why Tridiagonalization
For any symmetric matrix 4: QTAQ =T
Where Q is n x n orthogonal matrix and 7'is a tridiagonal matrix

= (oq By ]
AQ_QT Prog B
:0 let Q:[Q1 q2 qn] r=|, P2 o3 Bs
e = 1 <—kth ql :Qel : .
: - n-1 %n |
0
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Lanczos Method

Why Tridiagonalization

For any symmetric matrix 4: QTAQ =T

Where Q is n x n orthogonal matrix and 7'is a tridiagonal matrix

_ (o By
AQ_QT praz po
’ et O=[q192--9,] r=|, f2refs
%=Lk ¢ = Qe |
0

KK/IOV Matrix Km (A, q1 n) = [ql Aq1 An_lql]

=(e Te Tze...Tn_le]
1+€1 1 1

Columns of O form orthogonal bases for Krylov Matrix !
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Lanczos Method

Construct partial O and partial T iteratively

AQ = QT

Let’s focus on & column of O

Aqy = Praqr-1+ 0 qx + Prdrs

Brar1=(A—o)qy — Br_19k—1 =

Tk

if 1, 20 Gre1 = 7% B where By =i,

Sanjiv Kumar 9/24/2010
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Prog Bo
B2 a3 B3

ﬂn—l p
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Lanczos Method

oq
Construct partial O and partial T iteratively Praa Bo
AQ =0T ro| Paosls
Let’s focus on & column of O :
L ﬂn—l p
Aq = Pradr-1+ ok + Prdia
Brdr+1 = (A= D)qr — Pradi-1 ="
if 1, 20 Gre1 = 7% B where By =i,
=91, ,BO =1 k=1.. pr?multiply by
while (8, = 0) Tt
Ak =1l Pra
T
ap =q; A using orthormality of g
Need matrix-vactor =~ _ qfl Tk 7 J y o
product Agq, = 1 = (A= D)qy — P19k
Pr = H’”kHz
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Lanczos Method

When to stop?
— Ideally until £ = rank of Krylov matrix
— Usually too long, so a threshold is used on residual

T
AQy = Or T + 1)

— Decompose T, SkTTkSk:diag(Gl,...,Hk)

Sanjiv Kumar 9/24/2010 EECS6898 — Large Scale Machine Learning
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Lanczos Method

When to stop?
— Ideally until £ = rank of Krylov matrix
— Usually too long, so a threshold is used on residual

T
AQy = Or T + 1)

-~ Decompose Ty §77,5, = diag(6ny) OV

Y

estimated eigenvectors of 4: O Sk estimated eigenvalues of 4

Sanjiv Kumar 9/24/2010 EECS6898 — Large Scale Machine Learning
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Lanczos Method

When to stop?
— Ideally until £ = rank of Krylov matrix
— Usually too long, so a threshold is used on residual

T
AQy = Or T + 1)

— Decompose T, S,{TkSk:diag(Gl,...ﬁk)

estimated eigenvectors of 4: O Sk estimated eigenvalues of 4

Accuracy #gi&)‘ei — /1‘ < ‘ﬂkHSki‘

Convergence >0y >4 () —1,) tan(gol)z l(cp_1(1+ 2,01))2
Kaniel-Page Theor -
g y cos(py) = ‘611T”1‘ Chebyshev pOIynpOLn(lﬁ—iz)/(ll—in)

top eigenvector of 4
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Lanczos Method

When to stop?
— Ideally until £ = rank of Krylov matrix
— Usually too long, so a threshold is used on residual

T
AQy = Or T + 1)

— Decompose T, S,{TkSk:diag(Gl,...,Hk)

estimated eigenvectors of 4: O Sk estimated eigenvalues of 4

Accuracy #gi&)‘@i — ,U‘ < ‘ﬂkHSki‘

Convergence >0y >4 () —1,) tan(gol)2 l(cp_1(1+ 2,01))2

Kaniel-Page Theory Chebyshev polynomial

T
cos(py) = ‘6]1 ”\14‘
top eigenvector of 4

Lanczos iterations converge faster than power iteration!

Sanjiv Kumar 9/24/2010 EECS6898 — Large Scale Machine Learning
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Avoid rounding
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Arnoldi's Method

A technique to solve large sparse asymmetric eigenproblems

— Generates a sequence of Hessenberg matrices with extremal
eigenvalues progressively better estimates i

0"A0=H == AQ=0H

k1 k H = full
Aqy = Y hipg; = 1 = Aqy — 2 Mg, O
i=1 i=1
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Arnoldi's Method

A technique to solve large sparse asymmetric eigenproblems

— Generates a sequence of Hessenberg matrices with extremal
eigenvalues progressively better estimates

0'40=H == AQ=0H

B full
k+1 k H =
Aqy = Y hipg; = 1 = Aqy — 2 Mg, O
i=1 i=1 _

it 0,20 Gr1=1 oy Mk = H’”kHz

After k steps T
AQy = O H + 1€

Hyy=ly — 0%

/U ': (ef y)7
ritz value

ritz vector
In practice, applied with multiple restarts!
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Randomized SVD and low-rank approx

Basic Problem oversampling

Given an mxn matrix 4, and an integer [ =k @ find an mx/
orthonormal matrix Q such that

AzQQTA

mxn mxl|

[ <<m,n

The columns of O form orthonormal basis for the range of 4
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Randomized SVD and low-rank approx

Basic Problem oversampling

Given an mxn matrix 4, and an integer [ =k @ find an mx/
orthonormal matrix Q such that

AzQQTA

mxn mxl|

[ <<m,n

The columns of O form orthonormal basis for the range of 4

How to do SVD?
1. Formasmall (/ x n) matrix: B = QTA O(mnl)

2. Compute SVD of B: B = Uxv! O(nlz)
3. Set U=QU O(ml?)

Of course, the best Qis: 0 =U; Expensive!

How to build approximate Q ?
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Randomized method

Basic Problem

Given an mxn matrix A, and an integer /, find an m x/orthonormal matrix
QOsuchthat 4~ 0 0’ 4

Procedure

1. Draw random vectors from P(w) wy,wp,...,w; € R

2. Form projected sample vectors Y = Awy,...,y; = Aw; € R"™

3. Form orthonormal vectors ¢1.92,---9; € R

Span(qq,92.....q;) =Span(yy, yo,...,¥;)  Gram-Schmidt or QR
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Randomized method

Basic Problem

Given an mxn matrix 4, and an integer /, find an m x/orthonormal matrix
QO suchthat 4~0 0’ 4

Matrix-version

1. Construct a random matrix (), of sizenx!  O(nl)

ost expensive!
2. Form mxl[sample matrix ¥; = 4 Q; @ Use randomized
FFT for O(mnlog(l))

3. Form an mx[ orthonormal matrix Q; such that Y; = Q,QZTYZ O(mlz)
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Randomized method

Basic Problem

Given an mxn matrix 4, and an integer /, find an m x/orthonormal matrix
QO suchthat 4~0 0’ 4

Matrix-version

1. Construct a random matrix (), of sizenx!  O(nl)

ost expensive!
2. Form mx[sample matrix ¥; = 4 Q; @ Use randomized
FFT for O(mnlog(l))

3. Form an mx[ orthonormal matrix Q; such that Y; = Q,QZTYZ O(mlz)

Error in Approximation HA -0 QTAH 20741
2

HA_Q, o7 AH2 < M+1LJk+ pafmin(m,n)los,y  with probability 1—6, 7
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Matrices with slowly decaying spectrum

Basic Idea
— Incorporate Krylov-space type power iteration

_ T\q — same singular vectors as of 4 but fast
B=(447)"4 decaying singular values

Sanjiv Kumar 9/24/2010 EECS6898 — Large Scale Machine Learning
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Matrices with slowly decaying spectrum

Basic Idea
— Incorporate Krylov-space type power iteration

_ T\q — same singular vectors as of A4 but fast
B=(447)"4 decaying singular values

Algorithm
1. Construct a random matrix €2, of size nx/

2. Form mx[ sample matrix Z = (4 AT)‘IA Q)

3. Form an mx[ orthonormal matrix ¢; from Z using partial QR

Sanjiv Kumar 9/24/2010 EECS6898 — Large Scale Machine Learning
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Matrices with slowly decaying spectrum

Basic Idea
— Incorporate Krylov-space type power iteration

_ T\q — same singular vectors as of A4 but fast
B=(447)"4 decaying singular values

Algorithm
1. Construct a random matrix €2, of size nx/

2. Form mx[ sample matrix Z = (4 AT)‘IA Q)
3. Form an mx[ orthonormal matrix ¢; from Z using partial QR

Error in Approximation

HA_Q, o AH2 < [+11Jk + pJmin(m,n) 124D, 1 with probability 1-6,7
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Randomized method: Example

Eigenfaces _ :
9 m="1254 faces n=384x256 pixels
10 Approximation error ey
[ | “Minimal error (est]]
—— g = 0 |
—6—q=1
—a—g=2
—8—qg=23
II
[
D |
- |
b=
gn 10"k
E
100 | | | 1
0 20 40 60 80 100
¢
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Randomized method

Advantages
1. Much faster than standard methods: O(mnlog k) instead of O(mnk)

2. Need to look at data only very few times (sometimes single pass!)
3. Easy parallel implementation

4. The error in approximation can be made arbitrarily small with very high
probability (even 10-19) inexpensively

5. Simple to code
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Randomized Vs Sparse Methods

Randomized methods

Build the approximate range of A by multiplying A with a new random
vector progressively

yl = AW]_,...,yl = AWZ

Sparse Methods
Build the approximate range of A by multiplying A recursively with the
outcome of the previous stage starting with a random vector

M= AW1,---, V) = Ayl_l if 4is square

Advantages of randomized method
1. Similar computational complexity
2. Can be parallelized
3. Provide better approximations even for small spectrum gaps
4. Can learn from very few (sometimes just one) passes over the data
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