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Discriminative Graphical Models for
Context-Based Classification

Sanjiv Kumar

1 Contextual Dependencies in Images

One of the fundamental problems in computer vision is that of image understanding
or semantic scene interpretation i.e., to interpret the scene contained in an image as a
collection of meaningful entities. This may involve parsing information in the scene
at different levels. Here, we focus on the problem of classification or labeling of
various components in natural images, where a component may be an image pixel,
a region, an object or the entire image itself.

The problem of detecting and classifying regions and objects in images is a chal-
lenging task due to ambiguities in the appearance of the visual data. The use of
context can help alleviate this problem significantly. For example, as shown in Fig.
1, just on the basis of appearance, it may be difficult to differentiate a sky patch
from a water patch but their relative spatial configuration with respect to other re-
gions removes this ambiguity. Similarly, a patch from a tree may appear locally very
similar to another patch from a building (Fig. 1, right image). But if we look at larger
neighborhoods of the patch, it is easy to classify which patch is a building patch.

It is well known that natural images are not a random collection of independent
pixels. The spatial arrangement of pixels (or blocks) in images is crucial to make
a meaningful image. It is important to use contextual information in the form of
spatial dependencies for robust analysis of images. Since these dependencies can
be short-range or long-range, one would like to have total freedom in modeling
data interactions without restricting oneself to small local neighborhoods. This idea
forms the core of the work described in this chapter. The spatial dependencies may
vary from being local to global and the challenge is how to maintain global spatial
consistency using models that only need to consider relatively local dependencies.
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Fig. 1 Classification of image components is difficult due to ambiguities in their appearance. In the
left image, sky and water regions look similar while in the right image, tree and building regions
look similar. Context can help resolve these ambiguities.

1.1 The Nature of Contextual Interactions

There are several types of contextual interactions one would like to model to achieve
robust classification in images. The simplest type of interaction is based on the no-
tion of spatial smoothness of labels in natural images. According to this, neighbor-
ing pixels tend to have similar labels (except at the discontinuities). For example,
if a pixel in left image in Fig. 1 has label sky, there is a high probability that the
neighboring pixels also have the same label except at the boundaries. In fact, the un-
derlying smoothness of natural images forms the basis for recovering the true image
from its noisy version in image denoising applications. These type of interactions
are generally restricted to the pixel level. However, in addition to these, there exist
significant interactions among bigger regions in images. In the previous example
(Fig. 1, left image), different semantic regions follow plausible spatial configura-
tions e.g., sky tends to occur above water or vegetation.

In addition to the interaction in labels, there are also complex interactions in the
observed data that might be required for classification purposes. Consider the task
of detecting structured textures (e.g., man-made structures such as buildings) in a
given image. The data belonging to this type of textures is highly dependent on its
neighbors. This is because, in man-made structures, the lines or edges at spatially
adjoining regions follow some underlying organization rules rather than being ran-
dom (see Fig. 1, right image).

Now, considering the case of parts-based object detection, one would like to de-
tect different parts of an object to form a hypothesis about the presence of the whole
object. For example, in Fig. 2 (a), we are interested in detecting a phone. Differ-
ent parts of the phone such as handle, keypad and front panel are related to each
other through geometric and, possibly, photometric constraints. The phone can be
detected in the scene if we can find the locations of these parts. However, to reliably
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(a) (b) (c)

Fig. 2 Context is important for the detection of objects in their natural surroundings. (a) Different
parts of an object (phone) are related through geometric constraints that can help in robust detec-
tion of individual parts. (b) Different objects (monitor, keyboard and mouse) in a scene occur in
restricted configurations which can help in detecting objects with impoverished appearance e.g.,
mouse. (c) Context from other regions e.g., buildings and roads can be helpful in detecting cars.

detect these parts, we need to encode not only the appearance of each individual
part but also the spatial relationships among the parts. Thus, in this case, context is
applied using the mutual relationships of different parts.

Finally, the contextual interactions for object detection are not limited to the parts
of a single object. These may include interactions among various objects or regions
in the scene. For example, as shown in Fig. 2 (b), the presence of a monitor screen
increases the probability of having a keyboard or mouse nearby. Exploiting such
contextual information is crucial especially for detecting those objects that have
impoverished appearances such as the mouse in this case. Similarly, the presence of
regions such as buildings and roads in a scene restricts the possible locations a car
can take in the image (Fig. 2 (c)).

To summarize, context in images can be broadly divided into two categories.
First, local context e.g., local smoothness of pixel labels in images or interactions
among different parts of an object, and second, global context such as interaction
among bigger objects and regions in images. The challenge is how to model dif-
ferent types of context, which may include complex dependencies in the observed
image data as well as the labels, in a principled manner. Ideally, one would like to
find a computational model that can learn all relevant types of context automatically
in a single consistent framework using the training data. Discriminative graphical
models provide a solid platform to achieve that. Such models are by nature non-
causal and are typically represented by undirected graphs. Let us first briefly review
an undirected probabilistic graphical model commonly used in Vision.
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2 Markov Random Field (MRF)

Markov Random Fields (MRFs) are the most popular undirected graphical models
in vision, which allow one to incorporate local contextual constraints in labeling
problems in a principled manner. MRFs were made popular in vision by early work
of Geman and Geman [4], and Besag [1]. MRFs are generally used in a probabilistic
generative framework that models the joint probability of the observed data and
the corresponding labels. In other words, let y be the observed data from an input
image, where y = {yi}i∈S, yi is the data from the ith site, and S is the set of sites.
Let the corresponding labels at the image sites be given by x = {xi}i∈S. In the MRF
framework, the posterior over the labels given the data is expressed using the Bayes’
rule as,

P(x|y) ∝ p(x,y) = P(x)p(y|x)
where the prior over labels, P(x) is modeled as a MRF. For computational tractabil-
ity, the observation or likelihood model, p(y|x) is assumed to have a factorized
form, i.e. p(y|x) = ∏i∈S p(yi|xi). However, this assumption is too restrictive for sev-
eral natural image analysis applications. For example, consider a class that contains
man-made structures (e.g. buildings). The data belonging to such a class is highly
dependent on its neighbors. This is because, in man-made structures, the lines or
edges at spatially adjoining sites follow some underlying organization rules rather
than being random. This is also true for a large number of texture classes that are
made of structured patterns.

Another thing to note is that the interaction among labels in MRFs is modeled
by the term P(x), which is seen as a prior in the Bayesian view. The main drawback
of this view is that the label interactions do not depend on the observed data y. This
prohibits one from modeling data-dependent interactions in labels that are neces-
sary for a variety of tasks. For example, while implementing local smoothness of
labels in image segmentation, it may be desirable to use observed data to modulate
the smoothness according to the image intensity gradients. Further, in parts based
object detection, to model interactions among object parts, we need observed data
to enforce geometric (and possibly photometric) constraints. This is also the case
for modeling higher level interactions between objects or regions in an image. As
we will see later, discriminative graphical models allow interactions among labels
based on unrestricted use of observations as necessary. This step is crucial to de-
velop models that can incorporate interactions of different types within the same
framework.

In MRF formulation of binary classification problems, the label interaction field
P(x) is commonly assumed to be a homogeneous and isotropic Ising model (or Potts
model for multiclass labeling problems) with only pairwise nonzero potentials. If
the data likelihood p(y|x) is approximated by assuming that the observed data is
conditionally independent given the labels, the posterior distribution1 over labels
can be written as,

1 With a slight abuse of notation, we will use the term ’MRF model’ to indicate this posterior.
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P(x|y)= 1
Zm

exp

(
∑
i∈S

log p(si(yi)|xi)+∑
i∈S

∑
j∈Ni

βmxix j

)
, (1)

where βm is the interaction parameter of the MRF, and si(yi) is a single-site feature
vector, which uses data only from a single site i, i.e., yi. Note that even though
only the label prior, P(x) was assumed to be a MRF, the assumption of conditional
independence of data implies that the posterior given in (1) is also a MRF. This
allows one to reap the benefits of readily available tools of inference over a MRF. If
the conditional independence assumption is not used, the posterior will usually not
be a MRF making the inference difficult.

Now, if we turn our attention again toward the original aim, we are interested
in classification of image sites. For classification purposes, we want to estimate the
posterior over labels given the observations, i.e., P(x|y). In a generative framework,
one expends efforts to model the joint distribution p(x,y), which involves implicit
modeling of the observations. In a discriminative framework, one models the distri-
bution P(x|y) directly. A major advantage of doing this is that the true underlying
generative model may be quite complex even though the class posterior is simple.
This means that the generative approach may spend a lot of resources on modeling
the generative models which are not particularly relevant to the task of inferring the
class labels. Moreover, learning the class density models may become even harder
when the training data is limited. The discriminative approach saves one from mak-
ing simplistic assumptions about the data. This view forms the core theme of the
model discussed in the following sections.

3 Conditional Random Field (CRF)

Conditional Random Fields (CRFs) were originally proposed by Lafferty et al. [15]
in the context of segmentation and labeling of 1-D text sequences. CRFs are dis-
criminative models that directly model the conditional distribution over labels i.e.,
P(x|y) as a Markov Random Field. This approach allows one to capture arbitrary
dependencies between the observations without resorting to any model approxima-
tions. In this chapter, we will follow the generalized version of CRFs proposed by
Kumar and Hebert [12] and [11]. They first introduced the extension of original 1-
D CRFs to 2-D graphs over images. Their version also allows the use of arbitrary
discriminative classifiers to model different types of interactions in labels and data,
leading to more flexible and powerful generalization of CRFs.

We first restate the definition of CRFs as given by Lafferty et al. [15]. Let the
observed data from an input image be given by y = {yi}i∈S where yi is the data from
ith site and yi ∈ ℜc. The corresponding labels at the image sites are given by x =
{xi}i∈S. First let us focus on binary classification problem, i.e. xi ∈ {−1,1}. Sec. 5.1
will describe its extension to multiclass labeling problem. The random variables x
and y are jointly distributed, but in a discriminative framework, a conditional model
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P(x|y) is constructed from the observations and labels, and the marginal p(y) is not
modeled explicitly.

Definition 0.1. CRF: Let G = (S,E) be a graph such that x is indexed by the vertices
of G. Then (x,y) is said to be a conditional random field if, when conditioned on
y, the random variables xi obey the Markov property with respect to the graph:
P(xi|y,xS−{i}) = P(xi|y,xNi), where S−{i} is the set of all the nodes in the graph
except the node i, Ni is the set of neighbors of the node i in G, and xΩ represents
the set of labels at the nodes in set Ω .

Thus, a CRF is a random field globally conditioned on the observations y. The
condition of positivity requiring P(x|y) > 0, ∀ x has been assumed implicitly. Us-
ing the Hammersley-Clifford theorem [6] and assuming only up to pairwise clique
potentials to be nonzero, the conditional distribution over all the labels x given the
observations y in a CRF can be written as,

P(x|y)= 1
Z

exp

(
∑
i∈S

Ai(xi,y)+∑
i∈S

∑
j∈Ni

Ii j(xi,x j,y)

)
, (2)

where Z is a normalizing constant known as the partition function, and -Ai and -Ii j
are the unary and pairwise potentials respectively. With a slight abuse of notation,
we will call Ai the association potential and Ii j the interaction potential.

There are two main differences between the conditional model given in Eq. (2)
and the traditional MRF framework given in Eq. (1). First, in the conditional fields,
the association potential at any site is a function of all the observations y while in
MRFs (with the assumption of conditional independence of the data), the associa-
tion potential is a function of data only at that site, i.e., yi. Second, the interaction
potential for each pair of nodes in MRFs is a function of only labels, while in the
conditional models it is a function of labels as well as all the observations y. As will
be shown later, these differences play a crucial role in modeling arbitrary interac-
tions in both observed data and labels in natural images in a principled manner.

In this discussion, we assume the random field given in Eq. (2) to be homoge-
neous, i.e., the functional forms of Ai and Ii j are independent of the location i. In
addition, we also assume the field to be isotropic implying that the label interac-
tions are non-directional. In other words, Ii j is independent of the relative locations
of sites i and j. Thus, subsequently we will drop the subscripts and simply use the
notation A and I to denote the two potentials. In fact, the assumption of isotropy can
be easily relaxed at the cost of a few additional parameters. Thus, we will consider
models of the following form:

P(x|y)= 1
Z

exp

(
∑
i∈S

A(xi,y)+∑
i∈S

∑
j∈Ni

I(xi,x j,y)

)
. (3)

Due to this form of CRFs, it is possible to treat different applications from low-
level image denoising to high-level contextual object detection seamlessly in a sin-
gle framework. Fig. 3 illustrates a typical CRF for an example image analysis task
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Fig. 3 An illustration of a
typical CRF for an example
task of man-made structure
detection in natural images.
The aim is to label each site
i.e., each 16×16 image block
whether it is a man-made
structure or not. The top layer
represents the labels on all
the image sites. Note that
each site i can potentially use
features from the whole image
y unlike the traditional MRFs.

of man-made structure detection. Suppose, we are given an input image y shown
in the bottom layer and we are interested in labeling each image site (in this case
a 16× 16 image block) whether it contains a man-made structure or not. The top
layer represents the labels x on all the image sites. Note that each site i can poten-
tially use features from the whole image y unlike the traditional MRFs. In addition,
CRFs allow to use image data to model interactions between two neighboring sites
i and j. The following sections describe how the unary and the pairwise potentials
are designed in CRFs.

3.1 Association Potential

In the CRF framework, the association potential, A(xi,y), can be seen as a measure
of how likely a site i will take label xi given image y, ignoring the effects of other
sites in the image (Fig. 4). Suppose, f (.) is a function that maps an arbitrary patch in
an image to a feature vector such that f : Yp →ℜl . Here Yp is the set of all possible
patches in all possible images. Let ωi(y) be an arbitrary patch in the neighborhood
of site i in image y from which we want to extract a feature vector f (ωi(y)). Note
that the neighborhood used for the patch ωi(y) need not be the same as the label
neighborhood Ni. Indeed, ωi(y) can potentially be the whole image itself. For clar-
ity, let us denote the feature vector f (ωi(y)) at each site i by f i(y). The subscript i
indicates the difference just in the feature vectors at different sites, not in the func-
tional form of f (.). Then, A(xi,y) is modeled using a local discriminative model that
outputs the association of the site i with class xi as,

A(xi,y) = logP′(xi| f i(y)), (4)

where P′(xi| f i(y)) is the local class conditional at site i. This form allows one to
use an arbitrary domain-specific probabilistic discriminative classifier for a given
task. This can be seen as a parallel to the traditional MRF models where one can
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Fig. 4 Given a feature vector
f i(y) at site i, the association
potential in CRFs can be
seen as a measure of how
likely the site i will take
label xi, ignoring the effects
of other sites in the image.
Note that the feature vector
f i(y) can be constructed by
pooling arbitrarily complex
dependencies in the observed
data y.

use arbitrary local generative classifier to model the unary potential. One possible
choice of P′(.) is Generalized Linear Models (GLM), which are used extensively
in statistics to model the class posteriors [18]. Logistic function is a commonly
used link in GLMs although other choices such as probit link exist. Using a logistic
function, the local class conditional can be written as,

P′(xi=1| f i(y))=
1

1+e−(w0+wT
1 f i(y))

=σ(w0+wT
1 f i(y)), (5)

where w = {w0,w1} are the model parameters. This form of P′(.) will yield a linear
decision boundary in the feature space spanned by vectors f i(y). To extend the lo-
gistic model to induce a nonlinear decision boundary, a transformed feature vector
at each site i can be defined as hi(y) = [1,φ1( f i(y)), . . . ,φR( f i(y))]T where φk(.) are
arbitrary nonlinear functions. These functions can be seen as explicit kernel map-
ping of the original feature vector into a high dimensional space. The first element of
the transformed vector is kept as 1 to accommodate the bias parameter w0. Further,
since xi ∈ {−1,1}, the probability in Eq. (5) can be compactly expressed as,

P′(xi|y) = σ(xiwT hi(y)). (6)

Finally, for this choice of P′(.), the association potential can be written as,

A(xi,y) = log(σ(xiwT hi(y))) (7)

This transformation ensures that the CRF is equivalent to a logistic classifier
if the interaction potential in Eq. (3) is set to zero. Besides GLMs, discriminative
classifiers based on SVM, Neural Network and Boosting have been successfully
used in modeling association potential in the literature. Note that in Eq. (7), the
transformed feature vector at each site i i.e., hi(y) is a function of the whole set
of observations y. This allows one to pool arbitrarily complex dependencies in the
observed data for the purpose of classification. On the contrary, the assumption of
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conditional independence of the data in the traditional MRF framework allows one
to use data only from a particular site, i.e., yi, to design the log-density, which acts
as the association potential as shown in Eq. (1).

3.2 Interaction Potential

In the CRF framework, the interaction potential can be seen as a measure of how
the labels at neighboring sites i and j interact given the observed image y (Fig. 5).
To model the interaction potential, I(.), we first analyze a form commonly used in
the MRF framework. For the isotropic, homogeneous Ising model, the interaction
potential is given as I(.) = βxix j, which penalizes every dissimilar pair of labels
by the cost β [8]. This form of interaction favors piecewise constant smoothing
of the labels without considering the discontinuities in the observed data explic-
itly. Geman and Geman extended the Ising model to a line-process model which
allows discontinuities in labels through piecewise continuous smoothing [4]. How-
ever, such discontinuity adaptive models also do not use the observed data to model
the discontinuities.

Fig. 5 Given feature vec-
tors ψ i(y) and ψ j(y) at two
neighboring sites i and j
respectively, the interaction
potential can be seen as a
measure of how the labels at
sites i and j influence each
other. Note that such interac-
tion in labels is dependent on
the observed image data y, un-
like the traditional generative
MRFs.

In contrast, in the CRF formulation, the interaction potential is a function of all
the observations y. Suppose, ψ(.) is a function that maps an arbitrary patch in an
image to a feature vector such that ψ : Yp → ℜγ . Let Ωi(y) be an arbitrary patch
in the neighborhood of site i in image y from which we want to extract a feature
vector ψ(Ωi(y)). Note that the neighborhood used for the patch Ωi(y) need not be
the same as the label neighborhood Ni. For clarity, let us denote the feature vector
ψ(Ωi(y)) at each site i by ψ i(y). Similarly, we define a feature vector ψ j(y) for
site j. Again, to emphasize, the subscripts i and j indicate the difference just in
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the feature vectors at different sites, not in the functional form of ψ(.). Given the
features at two different sites, we want to learn a pairwise discriminative model
P′′(xi =x j|ψ i(y),ψ j(y)) . Note that by choosing the function ψ i to be different from
f i, used in Eq. (5), information different from f i can be used to model the relations
between pairs of sites.

For a pair of sites (i, j), let µ i j(ψ i(y),ψ j(y)) be a new feature vector such that
µ i j : ℜγ ×ℜγ → ℜq. Denoting this feature vector as µ i j(y) for simplification, the
interaction potential is modeled as,

I(xi,x j,y) = xix jvT µ i j(y), (8)

where v are the model parameters. Note that the first component of µ i j(y) is fixed to
be 1 to accommodate the bias parameter. There are two interesting properties of the
interaction potential given in Eq. (8). First, if the association potential at each site
and the interaction potentials for all the pairwise cliques except the pair (i, j) are set
to zero in Eq. (3), the CRF acts as a logistic classifier which yields the probability
of the site pair to have the same labels given the observed data. Of course, one can
generalize the form in Eq. (8) as,

I(xi,x j,y) = logP′′(xi,x j|ψ i(y),ψ j(y)), (9)

similar to the association potential defined in Sec. 3.1 and can use arbitrary pairwise
discriminative classifier to define this term. The second property of the interaction
potential form given in Eq. (8) is that it generalizes the Ising model. The original
Ising form is recovered if all the components of vector v other than the bias parame-
ter are set to zero in Eq. (8). A geometric interpretation of interaction potential is that
it partitions the space induced by the relational features µ i j(y) between the pairs that
have the same labels and the ones that have different labels. Hence Eq. (8) acts as a
data-dependent discontinuity adaptive model that will moderate smoothing when the
data from the two sites is ’different’. The data-dependent smoothing can especially
be useful to absorb the errors in modeling the association potential. Anisotropy can
be easily included in the CRF model by parameterizing the interaction potentials of
different directional pairwise cliques with different sets of parameters v.

4 Parameter Learning and Inference

One of the crucial requirements to make the CRF-based models applicable to a vari-
ety of real-world tasks is accurate and efficient parameter learning in these models.
Here, we focus on maximum likelihood based supervised learning of CRFs.

For 1-D sequential CRFs proposed by Lafferty et al. [15], exact maximum like-
lihood parameter learning is feasible because the induced graph does not contain
loops. However, when a graph contains loops, it is generally infeasible to exactly
maximize the likelihood with respect to the parameters. Therefore, a critical issue
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in applying CRFs to image-based applications is the design of effective parameter
learning techniques that can operate on arbitrary graphs.

4.1 Maximum likelihood parameter learning

Let θ be the set of unknown CRF parameters where θ = {w,v}. Given M i.i.d.
labeled training images, the maximum likelihood estimates of the parameters are
given by maximizing the log-likelihood l(θ) = ∑M

m=1 logP(xm|ym,θ), i.e.,

θ̂ =argmax
θ

M

∑
m=1

{
∑

i∈Sm
logσ(xm

i wT hi(ym))+ ∑
i∈Sm

∑
j∈Ni

xm
i xm

j vT µ i j(y
m)−logZm

}
, (10)

where the partition function for the mth image is,

Zm = ∑
x

exp

{
∑

i∈Sm
logσ(xiwT hi(ym))+ ∑

i∈Sm
∑

j∈Ni

xix jvT µ i j(y
m)

}
.

Note that Zm is a function of the parameters θ and the observed data ym. For learning
the parameters using gradient ascent, the derivatives of the log-likelihood are

∂ l(θ)
∂w

=
1
2 ∑

m
∑

i∈Sm
(xm

i −〈xi〉θ ;ym)hi(ym), (11)

∂ l(θ)
∂v

=∑
m

∑
i∈Sm

∑
j∈Ni

(xm
i xm

j −
〈
xix j

〉
θ ;ym)µ i j(y

m). (12)

Here 〈·〉θ ;ym denotes expectation with P(x|ym,θ). Ignoring µi j(ym), gradient ascent
with Eq. (12) resembles the problem of learning in Boltzmann machines.

For arbitrary graphs with loops, the expectations in Eq. (11) and Eq. (12) cannot
be computed exactly due to the combinatorial size of the label space. Sampling pro-
cedures such as Markov Chain Monte Carlo (MCMC) can be used to approximate
the true expectations. Unfortunately, MCMC techniques have two main problems:
a long ‘burn-in’ period (which makes them slow) and high variance in estimates.
Although several techniques have been suggested to approximate the expectations,
let us focus on two popular methods (see [10] for other choices and a detailed com-
parison).

4.1.1 Pseudo-Marginal Approximation (PMA)

It is easy to see that if we had true marginal distributions Pi(xi|y,θ) at each site i, and
Pi j(xi,x j|y,θ) at each pair of sites i and j ∈Ni, we could compute exact expectations
as:
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〈xi〉θ ;y = ∑
xi

xiPi(xi|y,θ) and
〈
xix j

〉
θ ;y = ∑

xi,x j

xix jPi j(xi,x j|y,θ).

Since computing exact marginal distributions is in general infeasible, a standard
approach is to replace the actual marginals by pseudo-marginals. For instance, one
can use loopy Belief Propagation (BP) to get these pseudo-marginals. It has been
shown in practice that for many applications loopy BP provides good estimates of
the marginals.

4.1.2 Saddle Point Approximation (SPA)

In Saddle Point Approximation (SPA), one makes a discrete approximation of the
expectations by directly using best estimates of labels at a given setting of param-
eters. This is equivalent to approximating the partition function (Z) such that the
summation over all the label configurations x in Z is replaced by the largest term in
the sum, which occurs at the most probable label configuration. In other words, if

x̂ = argmax
x

P(x|y,θ),

then according to SPA,

Z ≈ exp

{
∑
i∈S

logσ(x̂iwT hi(y))+∑
i∈S

∑
j∈Ni

x̂ix̂ jvTµ i j(y)

}
.

This leads to a very simple approximation to the expectation, i.e., 〈xi〉θ ;y ≈ x̂i. If we
further assume mean-field type decoupling, i.e.,

〈
xix j

〉
θ ;y = 〈xi〉θ ;y

〈
x j

〉
θ ;y, it also

follows that
〈
xix j

〉
θ ;y ≈ x̂ix̂ j. Readers familiar with perceptron learning rules can

readily see that with such an approximation, the updates in Eq. (11) are very similar
to perceptron updates.

However, this discrete approximation raises a critical question: Will the gradient
ascent of the likelihood with such gradients converge? It has been shown empirically
that while the approximate gradient ascent is not strictly convergent in general, it is
weakly convergent in that it oscillates within a set of good parameters, or converges
to a good parameter with isolated large deviations. In fact one can show that this
weak-convergence behavior is tied to the empirical error of the model [10]. To pick a
good parameter setting, one can use any of the popular heuristics used for perceptron
learning with inseparable data. For instance, one can let the algorithm run up to
some fixed number of iterations and pick the parameter setting that minimizes the
empirical error. Even though lack of strict convergence can be seen as a drawback of
SPA, the main advantage of these methods is very fast learning of parameters with
performance similar to or better than pseudo-marginal methods.



Discriminative Graphical Models for Context-Based Classification 13

4.2 Inference

Given a new test image y, the problem of inference is to find the optimal labels x over
the image sites, where optimality is defined with respect to a given cost function.
Maximum A Posteriori (MAP) solution is a widely used estimate that is optimal
with respect to the zero-one cost function defined as,

C(x,x∗) = 1−δ (x− x∗), (13)

where x∗ is the true label configuration, and δ (x−x∗) is 1 if x = x∗, and 0 otherwise.
The MAP solution is defined as,

x̂ = argmax
x

P(x|y,θ).

For binary classifications, the MAP estimate can be computed exactly for an
undirected graph using the max-flow/min-cut type of algorithms if the probability
distribution meets certain conditions [5]. While using the Ising MRF model, exact
MAP solution can be computed if βm ≥ 0. For the CRF model, since max-flow
algorithms do not allow negative interaction between the sites, the data-dependent
smoothing for each clique is set to be vTµ i j(y) = max{0,vTµ i j(y)}, yielding an
approximate MAP solution.

An alternative to the MAP solution is the Maximum Posterior Marginal (MPM)
solution which is optimal for the sitewise zero-one cost function defined as,

C(x,x∗) = ∑
i∈S

(1−δ (xi− x∗i )), (14)

where x∗i is the true label at the ith site. The MPM solution at each site is defined as,

x̂i = argmax
xi

Pi(xi|y,θ), where Pi(xi|y,θ) = ∑
x−xi

P(x|y,θ),

and x− xi denotes all the node variables except for node i. The MPM computation
requires marginalization over a large number of variables which is generally NP-
hard. However, as discussed before, one can use loopy BP to obtain an estimate of
the MPM solution.

5 Extensions

A large number of extensions of the basic binary CRFs have been proposed in the
literature. In the following sections, we discuss two key extensions: Multiclass CRFs
to deal with multiclass labeling problems, and Hierarchical CRFs to incorporate
hierarchical context in the model.
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5.1 Multiclass CRF

There are several applications in computer vision that require the nodes in the graph
to take multiple class labels. For example, in semantic scene segmentation task, one
may want to assign each pixel into one of many classes such as sky, water, grass etc.
In the case of image denoising applied to a 256 gray-level image, each pixel may
take up to 256 labels. In the part-based paradigm of object detection, usually there
are more than two characteristic parts that make the full object, and the goal is to
label each generic part in the scene as a specific part of the object or background.

The extension of binary CRFs to the multiclass case is relatively straightforward.
The only difference in multiclass CRF formulation is that the labels at the image
sites are given by x = {xi}i∈S, where xi ∈ {1, . . . ,C} and C is the number of classes.
To illustrate various terms in the model, we will take the example of parts-based
object detection, in which, each image site is a part and the first (C− 1) labels
correspond to specific object parts and the Cth label corresponds to the background
class.

Following the arguments given in Sec. 3.1 and the form of the association poten-
tial for binary CRFs (Eq. (7)), the association potential can be easily generalized to
the multiclass case as,

A(xi,y) =
C

∑
k=1

δ (xi = k) logP′(xi = k|y), (15)

where δ (xi = k) is 1 if xi = k and 0 otherwise. Let hi(y) be a (possibly kernelized)
feature vector at each site i. Note that, in the case of object detection, the vector
hi(y) encodes the appearance based features of the ith part. To model P′(xi = k|y),
one can simply use the multiclass version of the logistic function described for the
binary CRFs in Sec. 3.1. This leads to the softmax function in the multiclass case
where,

P′(xi = k|y) =





exp(wT
k hi(y))

1+∑C−1
l=1 exp(wT

l hi(y))
if k < C

1
1+∑C−1

l=1 exp(wT
l hi(y))

if k = C.

(16)

Here, wk are the model parameters for k = 1 . . .C−1. For a C class classification
problem, one needs only C−1 independent hyperplanes, which may lie in a high di-
mensional (kernel-projected) space inducing a non-linear decision boundary in the
original feature space. In the application of object detection, the association poten-
tial discriminatively models the individual appearance of each part in the image.

The interaction potential in CRFs predicts how the labels at two sites interact
given the observations. Generalizing the interaction potential given for binary CRFs,
interaction potential for multiclass CRFs can be written as,

I(xi,x j,y) =
C

∑
k=1

C

∑
l=1

vT
kl µ i j(y)δ (xi = k)δ (x j = l). (17)
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Here, µ i j(y) is the pairwise relational vector for a site pair (i, j), and vkl are the
model parameters. Note that in the case of object detection, the vector µi j(y) en-
codes the pairwise features required for forcing geometric and possibly photometric
consistency in the pair of parts. For undirected graphs, the site pairs are unordered
sets implying that vkl = vlk for k, l = 1 . . .C. The from of interaction potential given
in Eq. (17) is a generalization of the Potts model used commonly in computer vision
problems such as image segmentation and restoration. The standard Potts model can
be recovered from Eq. (17) if vkl = 0 when k 6= l, and all the elements of the vector
vkl are set to zero except the bias term. A more specific but popular form of Potts
model is achieved if the bias terms for all the vectors vkk ∀ k are also fixed to be the
same. Similar to the interaction potential of the binary CRF, multiclass interaction
potential can be seen as a pairwise discriminative model which partitions the pair-
wise relational feature space (induced by the features µi j(y)) in C(C+1)/2 regions.

It is important to note that, to enforce the geometric consistency relationship
between parts, the interaction between part labels has to use observed data (e.g. the
location of patches). Since, the pairwise potential I is a function of observed data in
CRFs, these fields provide a principled way to represent relations between parts in
a random-field framework.

Let θ be the set of CRF parameters where θ =
{{wk}k=1...C−1,{vkl}k,l=1...C

}
.

To learn θ via maximum likelihood, similar to the binary CRFs, one can write the
gradient of log-likelihood as,

∂ l(θ)
∂wk

=∑
m

∑
i∈Sm

(
δ (xm

i =k)−〈δ (xi =k)〉
)

hi(ym), (18)

∂ l(θ)
∂vkl

=∑
m

∑
i∈Sm

∑
j∈Ni

(
δ (xm

i =k)δ (xm
j = l)−〈

δ (xi =k)δ (x j = l)
〉)

µ i j(y
m), (19)

where 〈.〉 denotes expectation with respect to the distribution P(x|ym,θ) and m
indexes over the training images. Generally the expectations in Eq. (18) and Eq.
(19) cannot be computed exactly even for moderate-size problems. Similar to the
previous discussion in Sec. 4, these expectations can be approximated by either
pseudo-marginals or Saddle Point Approximation with multiclass extensions of
min-cuts [3]. Similarly, for inference, one can get the labels either using approx-
imate MAP obtained by multiclass min-cut or using approximate MPM via loopy
BP.

5.2 Hierarchical CRF

So far, we have discussed spatial interactions in natural images at pixel, block or
patch level for binary or multiclass classification problems. However, in natural im-
ages, there are different levels of context one would like to use to improve clas-
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sification accuracy. For instance, for pixelwise image labeling problem, the local
smoothness of pixel labels provides local context. On the other hand, there exists a
higher level global context since image regions follow probable configurations. For
example, sky tends to occur above water or vegetation. Similarly, for the problem
of parts-based object detection, local context is the geometric relationship among
parts of an object while the relative spatial configurations of different objects (e.g.,
monitor, keyboard and mouse) provides the global context. Here we present a high-
level discussion on how one can use hierarchy of CRFs to improve classification in
images. For a detailed discussion on this topic, see [13].

Fig. 6 A simple illustration of
a two-layer hierarchical field
for contextual classification.
Squares and circles represent
sites at the two layers. Only
one node along with its neigh-
bors is shown for each layer
for clarity. Layer 1 models
short-range interactions while
layer 2 models long range
dependencies in images. The
true labels x are obtained
from the top layer by a simple
replication mapping Γ (.).

Labels x

y

(Layer 1)

(Layer 2)

(2)

Observed Image 

x

Labels x(1)

Γ(.)
True Labels

A simple two-layer hierarchical model is shown in Fig. 6, in which each layer is
modeled as a separate CRF. The first layer models short range interactions among
the sites such as label smoothing for pixelwise labeling, or geometric consistency
among parts of an object. The second layer models the long range interactions
between groups of sites corresponding to different coherent regions or objects.
Thus, this layer can take into account interactions between different objects (moni-
tor/keyboard) or regions (sky/water).

The two layers of the hierarchy are coupled with directed links. A node in layer
1 may represent a single pixel or a patch while a node in layer 2 represents a larger
homogeneous region or a whole object. Each node in the two layers is connected
to its neighbors through undirected links. In addition, each node in layer 2 is also
connected to multiple nodes in layer 1 through directed links. The use of directed
links between the two layers, instead of the undirected ones, avoids the intractability
of dealing with a large partition function. Each layer being a CRF, any node in layer
1 can potentially use arbitrary features from the whole image. The top layer uses the
output of layer 1 as input through the directed links.

Given the observed data y = {yi}i∈S in an image, we are interested in finding
the labels, x = {xi}i∈S, where xi ∈ L and |L| is the number of classes. For image
labeling, a site is a pixel and a class may be sky, grass etc., while for contextual
object detection, a site is a patch and a class may refer to objects e.g., keyboard or
mouse. The set of sites in layer 1 is S(1) such that S(1) = S, while that in layer 2
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is denoted by S(2). The nodes in layer 2 induce a partition over the set S(1) such
that a subset of nodes in layer 1 correspond to one node in layer 2. Formally, a
partition h is defined as h : S(1) → S(2) such that, if S(1)

r is a subset of nodes in layer
1 corresponding to node r ∈ S(2), then S(1) =

⋃
r

S(1)
r and S(1)

r ∩S(1)
s = φ ∀ r,s ∈ S(2).

Let the space of all partitions be denoted asH. This partition should not be confused
with an image partition, since it is defined over the sites in S(1), which may not
correspond to the image pixels (e.g., in object detection, where sites are random
image patches). Let the labels on the sites in the two layers be given by x(1) =
{x(1)

i }i∈S(1) and x(2)={x(2)
r }r∈S(2) , where x(1)

i ∈L(1) and x(2)
r ∈L(2), where L(2) =L.

The nodes in layer 1 may take pseudo-labels that are different from the final desired
labels. For instance, in object detection, a node at layer 1 may be labeled as ’a certain
part’ of an object rather than the object itself. In fact, the labels at this layer can be
seen as noisy versions of the true desired labels.

Given an image y, we are interested in obtaining the discriminative distribution
P(x|y) over the true labels. Let us define a space of valid partitions, Hv, such that
∀ h ∈ Hv, xi = x(2)

r ∀ i ∈ S(1)
r , where r = h(i). This implies that multiple nodes

in layer 1 form a hypothesis about a single homogeneous region or an object in
layer 2. Further, we define a replication mapping, Γ (.) , which takes any value
(discrete or continuous) on node r and assigns it to all the nodes in S(1)

r . Thus, given
a partition h ∈ Hv, and the corresponding labels x(2), the labels x can be obtained
simply by replication. This implies, P(x|y)≡ P(x(2)|h,y) if h∈Hv . However, given
an observed image y, the constraint h ∈Hv is too restrictive. Instead, one can define
a distribution, P(h|y), that prefers partitions in Hv over all possible partitions, and,

P(x|y)∼= ∑
h∈H

P(x(2)|h,y)P(h|y)

= ∑
h∈H

∑
x(1)

P(x(2)|h,x(1))P(h|x(1))P(x(1)|y), (20)

where both P(x(1)|y) and P(x(2)|h,x(1)) are modeled as CRFs. In Eq. (20), com-
puting the sum over all the possible configurations of x(1) is a NP-hard problem.
One naive way to reduce the complexity is to do inference in layer 1 until equilib-
rium is reached and then use this configuration x̂(1) as input to the next layer, i.e.,
P(x(1)|y) = δ (x(1)− x̂(1)). However, by doing this, one loses the power of model-
ing the uncertainty associated with the labels in layer 1, which was included ex-
plicitly in Eq. (20) through P(x(1)|y). Here, we discuss a simple variant, where
along with the equilibrium configuration, one also propagates the uncertainty as-
sociated with it to the next layer. The sitewise maximum marginal configuration are
used as x̂(1). Let the marginals at each site i be bi(x

(1)
i ) = ∑x(1)−x(1)

i
P(x(1)|y), and

b(x(1)) = {bi(x
(1)
i )}i∈S(1) . The belief set, b(x(1)) is propagated as an input to the next

layer. Since the configuration x̂(1) can be obtained directly from b(x(1)) by taking its
sitewise maximum configuration, we omit explicit conditioning on x̂(1). Thus,
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P(x|y)≈ ∑
h∈H

P(x(2)|h,b(x(1)))P(h|b(x(1))). (21)

Note that both terms in the summation implicitly include the transition probabilities
P(x(2)

r |x̂(1)
i ). For the first term, these are absorbed in the unary potential of the CRF

in layer 2.
The model describing layer 1 is a simple multiclass CRF and different potentials

are designed as discussed before in Sec. 5.1. The CRF formulation for layer 2 can
be obtained in the same way except that the observations for this layer are b(x(1)),
the set of sites is S(2), and the label set is L(2). The only difference lies in the form
of the unary potential. Each node r ∈ S(2) in this layer receives beliefs as input from
the nodes contained in set S(1)

r from the layer below. Taking into consideration the
transition probabilities on the directed links between node r and all the nodes in S(1)

r ,
the unary potential can be written as,

A(2)(x(2)
r ,b(x(1))) = ∑

k∈L(2)

{
δ (x(2)

r = k)

(
logP′(x(2)

r = k|b(x(1)))+
1

|S(1)
r | ∑

i∈S(1)
r

logP(x(2)
r = k|x̂(1)

i )
)}

. (22)

Here, the first term in parentheses on the right hand side involves local classifier
P′(.), which is again modeled as a softmax function. It takes features as input, which
are constructed using the beliefs b(x(1)) at layer 1. The second term arises due to the
directed connections between each node r ∈ S(2) in layer 2 to all the nodes in the set
S(1)

r in layer 1. The effect of this term can be understood by switching the first term
off along with the interaction potential. This will lead to the intuitive reasoning of
assigning node r that label which maximizes the joint transition probability (com-
puted by assuming each site in S(1)

r to be independent) given a label configuration
x̂(1) at layer 1. The term, |S(1)

r | acts as a normalizer that takes into account the dif-
ferent cardinalities of sets S(1)

r . In the interaction potential for this layer, the features
µ i j(.) are designed such that they capture relative configurations of two regions or
objects.

The distribution P(h|b(x(1))) indicates goodness of a partition in layer 2. Here,
we just mention that one can design this function according to the application do-
main. One can find more details on possible choices in [13]. The set of parameters
Θ , to be learned in the hierarchical model, includes the parameters of the CRFs at
layer 1 and layer 2, and the transition probability matrices P(x(2)

r |x̂(1)
i ). The CRF pa-

rameters for each layer are the parameters of the unary and pairwise potentials i.e.,

θ (α) =
{

w(α)
k ,v(α)

kl

}α=1,2

∀k,l
. The parameters in the joint model are learned sequen-

tially using loopy BP. The procedure is a simple extension of learning in multiclass
CRFs discussed before. Similarly, inference in this model is carried out using a com-
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bination of loopy BP and sampling of partitions. We refer the reader to [13] for more
details on learning and inference.

6 Applications

In this section, we discuss a few real-world applications of different types of CRFs.
The application of binary CRFs is considered on man-made structure detection,
while the performance of multiclass and hierarchical CRFs is tested on image clas-
sification and contextual object detection tasks.

6.1 Man-Made Structure Detection

Detecting man-made structures in natural scenes is difficult because there are sig-
nificant within class variations in the appearance of data from the structured class.
Similarly, the data from the nonstructured class is virtually unconstrained, and there
is a large overlap between these two classes. The training and the test set used in this
study contained 108 and 129 images respectively from the Corel image database.
Each image is divided into nonoverlapping 16×16 pixels blocks. Each block forms
a site in the graph. The whole training set contained 36,269 blocks from the non-
structured class, and 3,004 blocks from the structured class.

To generate the features, the intensity gradients contained within a window in the
image are combined to yield a histogram over gradient orientations. Each histogram
count is weighted by the gradient magnitude at that pixel and smoothed using kernel
smoothing. Heaved central-shift moments are computed to capture the the average
spikeness of the smoothed histogram as an indicator of the structuredness of the
patch. The orientation based feature is obtained by passing the absolute difference
between the locations of the two highest peaks of the histogram through sinusoidal
nonlinearity. The absolute location of the highest peak is also used.

For each image, two different type of feature vectors at each site are computed.
First a single-site feature vector at the site i, si(yi) is computed using the histogram
from the data yi at that site. Obviously, this vector does not take into account the
influence of the data in the neighborhood of that site. The vector si(yi) is composed
of the first three moments and the two orientation based features described above.
Next, a multiscale feature vector at the site i, f i(y) is computed which explicitly
takes into account the dependencies in the data contained in the neighboring sites. It
should be noted that the neighborhood for the data interaction need not be the same
as for the label interaction. To compute f i(y), smoothed histograms are obtained at
three different scales, where each scale is defined as a varying window size around
the site i. The number of scales is chosen to be 3, with the scales changing in regular
octaves. The lowest scale is fixed at 16×16 pixels (i.e., the size of a single site), and
the highest scale at 64×64 pixels. The moment and orientation based features are
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(a) Input image (b) Logistic

(c) MRF (d) CRF

Fig. 7 Structure detection results on a test example for different methods. For similar detection
rates, CRF reduces the false positives considerably.

obtained at each scale similar to si(yi). In addition, two interscale features are also
obtained using the highest peaks from the histograms at consecutive scales. To avoid
redundancy in the moments based features, only two moment features are used from
each scale yielding a 14 dimensional feature vector.

To make the unary classifier in the CRF more powerful, a transformed feature
vector hi(y) is computed at each site i by using an explicit quadratic kernel. The
quadratic mapping gives a 119 dimensional vector at each site. The features ψ i are
chosen to be the same as f i. Further, the pairwise data vector µ i j(y) is obtained
by concatenating ψ i(y) and ψ j(y). The parameters of the CRF model were learned
using the maximum likelihood framework as described before.

6.1.1 Qualitative Evaluation

For an input test image given in Fig. 7 (a), the structure detection results from three
methods are shown in Fig. 7. The blocks identified as structured have been shown
enclosed within an artificial boundary. It can be noted that for similar detection rates,
the number of false positives have significantly reduced for the CRF based detection.
Locally, different branches may yield features similar to those from the man-made
structures. The logistic classifier does not enforce smoothness in labels, which led
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(a) MRF (b) CRF

Fig. 8 Detection of a building in poor illumination conditions in a test image. CRFs can improve
the detection rate while simultaneously reducing the false positive rate.

to increased isolated false positives. However, the MRF solution with Ising model
simply smooths the labels without taking observations into account resulting in a
smoothed false positive region around the tree branches.

The performance of MRF and CRF is compared on another test example requir-
ing detection of a building in poor illumination conditions (Fig. 8). CRFs give higher
detection rate while reducing the false positive rate by enforcing interactions among
the labels as well as the data from multiple scales.

6.1.2 Quantitative Evaluation

To carry out the quantitative evaluations, the detection rates and the number of false
positives per image for each technique are compared. To avoid the confusion due
to different effects in the CRF model, the first set of experiments is conducted us-
ing the single-site features for all the three methods. Thus, no neighborhood data
interaction is used for both the logistic classifier and the CRF, i.e., f i(y) = si(y).
The comparative results for the three methods are given in Table 1 next to ’MRF’,
’Logistic−’ and ’CRF−’. For comparison purposes, the false positive rate of the lo-
gistic classifier is fixed to be the same as the CRF in all the experiments. It can be
noted that for similar false positives, the detection rates of the traditional MRF and
the CRF are higher than the logistic classifier due to the label interaction. However,
the higher detection rate of the CRF in comparison to the MRF indicates the gain
due to the use of discriminative models in the association and interaction potentials.
In the next experiment, to take advantage of the power of the CRF framework, data
interaction was allowed for both the logistic classifier as well as the CRF (’Logistic’
and ’CRF’ in Table 1). The CRF detection rate increases substantially and the false
positives decrease further indicating the importance of allowing the data interaction
in addition to the label interaction.
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Table 1 Detection Rates (DR) and False Positives (FP) for the test set containing 129 images
(49,536 sites). FP for logistic classifier were kept to be the same as for CRF for DR comparison.
Superscript ′−′ indicates no neighborhood data interaction was used.

MRF Logistic− CRF− Logistic CRF

DR (%) 58.35 47.50 61.79 60.80 72.54
FP (per image) 2.44 2.28 2.28 1.76 1.76

6.2 Image Classification and Contextual Object Detection

The experiments in this section demonstrate the capability of hierarchical CRFs. The
first set of experiments is based on the ’Beach’ dataset from [14], which contains a
collection of consumer photographs. The goal was to assign to each image pixel one
of 6 class labels: {sky, water, sand, skin, grass, other}. This dataset is particularly
challenging due to wide within-class variance in the appearance of the data due to
drastic illumination conditions. Another characteristic of this dataset which makes
it difficult is that, for most of the images, a significant area belongs to none of
the semantic classes (i.e., falls under the other category). Traditionally it has been
hard to model this category because any pixel in this category can virtually have
unconstrained appearance.

The layer 1 of hierarchical CRF implements smoothness of pixel labels as the
local context. Hence, the sites in layer 1 are image pixels, and three HSV color
features and two texture features (based on second moment matrix) give a 5 dimen-
sional unary feature vector. Use of quadratic kernel yielded a 21 dimensional feature
vector hi(y). To implement label smoothing, the pairwise feature vector µ i j(y) is set
to 1, resulting in the Potts model.

The layer 2 encodes interactions among different regions given the beliefs at layer
1 and a partition. Each region of the partition is a site in layer 2. For this dataset, the
number of sites at layer 2 varied from 13 to 49 for different images. Each node in
this layer is connected to every other node. The computations over these complete
graphs are still efficient because of the small number of nodes in the graph. The
unary feature vector for each node r consists of normalized product of beliefs from
all the sites i in S(1)

r and the normalized centroid location of the region r. This gives
an 8 dimensional feature vector. Further, quadratic transforms are used to obtain a 44
dim vector. The pairwise features between regions are chosen to be binary indicator
attributes: a region is above, beside or enclosed within another region.

A few example results from the test set are shown in Fig. 9. The softmax classi-
fier (second column) does not perform well because it classifies each pixel indepen-
dently without considering interactions in the labels. For example, there is substan-
tial confusion between sand and skin regions or water and sky regions. In addition,
the labels are not smooth giving the resulting classification a dithered appearance.
The smoothness of labels can be achieved (third column) by implementing smooth-
ing interaction potential in layer 1 of the hierarchical CRF. However, the errors in the
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Input image Softmax classifier Layer 1 output Final result
Accuracy on test set 62.3% 63.8% 74.0%

sk
y

gr
as

s

sk
in

sa
nd

w
at

er

O
th

er

Fig. 9 Pixelwise classification results on the Beach dataset using hierarchical CRFs. ’Layer 1
output’ shows the result of implementing label interactions through layer 1 only. Label smoothing
is achieved but many large regions are labeled wrong in this output. ’Final result’ shows the final
classification using both the layers in the hierarchical model which eliminates most of the errors.

larger regions are not eliminated. But, when the full hierarchical model is applied
where the second layer enforces the spatial configuration of the regions, most of the
errors are eliminated. Note that there are several images that contain pixels which
do not belong to any of the semantic classes (e.g., clothing, chairs, boat etc). Such
regions are also classified well by the hierarchical CRF. The last row in Fig.9 shows
that the average accuracy on the test set increases to 74% using the full hierarchical
model in comparison to 62.3% from the softmax classifier.

The second set of experiments aims to detect objects i.e., monitor, keyboard and
mouse in an office scene. The dataset contained 164 low-resolution images of size
less than 100×100 pixels each [21]. The main challenge in the dataset is the detec-
tion of the keyboard and the mouse, which spanned only a few pixels in the images.
For these experiments, the hierarchical CRF enforces interactions among the three
objects, resulting in a significant reduction in false alarms.

For each object, at first a base detector is trained using gentle-boost. Since the
size of the mouse in the input images is very small (on average about 8×5 pixels),
the boosting based detector could not be trained for the mouse. Instead, a simple
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template matching based detector is learned. A patch at a location, where the output
of any of the three detectors is higher than a threshold, represents a site in S(1). The
set of sites S(2) in layer 2 is the same as in layer 1, indicating the trivial partition. The
label set for the sites in S(1) and S(2) is {monitor, keyboard, mouse, background}.
Since layer 1 uses the output of a standard object detector, interactions among sites
take place only at layer 2.

The unary features at layer 2 consist of the score from each detector yielding
a 3 dimensional feature vector. The difference of coordinates of the patch centers
resulted in a 2 dimensional pairwise feature vector. Each node is connected to every
other node in this layer. Fig. 10 shows a typical result from the test set. It is clear
that the false alarms are reduced considerably in comparison to the base detector.
The use of context did not change the results for the monitor, since the base detector
itself was able to give good performance. This is reasonable because one hopes the
context to be more useful when the local appearance of an object is more ambiguous.
The ROC curves for the keyboard and the mouse detection are compared with the
corresponding base detectors in Fig. 11. For the mouse detection, even though the
hierarchical CRF was able to reduce the false positives significantly, the number of
false alarms per image is still high. This is understandable because the size of mouse
is very small in all the images. One can hope for context to improve detection only
if there exists at least ’bare-minimum’ appearance based evidence for that object in
images.

Input image Monitor (NC) Keyboard (NC) Mouse (NC)

Monitor (WC) Keyboard (WC) Mouse (WC)

Fig. 10 Detection results for monitor, keyboard and mouse using context based on spatial config-
uration of objects. NC - No Context, WC - With Context. Monitor detection was good with the
base detector itself due to less appearance ambiguity. Note the impoverished appearances of the
keyboard and the mouse. Green and red indicate true detections and false alarms respectively.
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Fig. 11 The ROC curves for the detection of keyboard (left) and mouse (right). Relatively high
false alarm rates for the mouse were due to very small size of mouse (about 8× 5 pixels) in the
input images.

7 Related Work and Further Readings

In this chapter, we gave a succinct review of basic types of CRFs used in computer
vision. One can find a more in-depth discussion on modeling, parameter learning
and inference in these CRFs in [9]. It also contains extensive details on the experi-
mental procedures including feature extraction and speed comparisons.

CRFs were introduced in computer vision by Kumar and Hebert [12] [11] ex-
tending the 1D-CRFs from Lafferty et al. [15]. Since then, a number of techniques
have been proposed in vision that further modified CRFs for various applications.
Different types of local classifiers such as neural network [7], boosted stumps [21]
and probit function [19] have been used to model clique potentials. A Hidden CRF
model was introduced in [20] to handle latent variables. Learning in CRFs was ex-
tended to a semi-supervised paradigm by [17]. As a final note, we would like to
mention that taking a non-probabilistic view, energy based models have been used in
vision. These models have expressive power similar to CRFs [2] [16]. However, ef-
fective parameter learning is perhaps the biggest challenge in such non-probabilistic
models.

References

1. Besag, J.: On the statistical analysis of dirty pictures. Journal of Royal Statistical Soc. B-48,
259–302 (1986)

2. Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary and region segmentation
of objects in n-d images. In Proc. International Conference on Computer Vision (ICCV) I,
105–112 (2001)

3. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts.
IEEE transactions on Pattern Analysis and Machine Intelligence (PAMI) 23(11), 1222–1239
(2001)

4. Geman, S., Geman, D.: Stochastic relaxation, gibbs distribution and the bayesian restoration
of images. IEEE Trans. on Patt. Anal. Mach. Intelli. 6, 721–741 (1984)

5. Greig, D.M., Porteous, B.T., Seheult, A.H.: Exact maximum a posteriori estimation for binary
images. Journal of Royal Statis. Soc. 51(2), 271–279 (1989)

6. Hammersley, J.M., Clifford, P.: Markov field on finite graph and lattices. Unpublished



26 Sanjiv Kumar

7. He, X., Zemel, R., Carreira-Perpinan, M.: Multiscale Conditional Random Fields for image
labelling. IEEE Int. Conf. CVPR (2004)

8. Ising, E.: Beitrag zur theorie der ferromagnetismus. Zeitschrift Fur Physik 31, 253–258 (1925)
9. Kumar, S.: Models for Learning Spatial Interactions in Natural Images for Context-Based

Classification. PhD Thesis, Carnegie Mellon University, The Robotics Institute, School of
Computer Science (2005)

10. Kumar, S., August, J., Hebert, M.: Exploiting inference for approximate parameter learning
in discriminative fields: An empirical study. Fourth Int. Workshop on Energy Minimization
Methods in Computer Vision and Pattern Recognition (EMMCVPR) (2005)

11. Kumar, S., Hebert, M.: Discriminative fields for modeling spatial dependencies in natural
images. in advances in Neural Information Processing Systems (NIPS) (2003)

12. Kumar, S., Hebert, M.: Discriminative Random Fields: A discriminative framework for con-
textual interaction in classification. in proc. IEEE International Conference on Computer
Vision (ICCV) 2, 1150–1157 (2003)

13. Kumar, S., Hebert, M.: A hierarchical field framework for unified context-based classification.
IEEE Int. Conf. on Computer Vision (ICCV) (2005)

14. Kumar, S., loui, A.C., Hebert, M.: An observation-constrained generative approach for prob-
abilistic classification of image regions. Image and Vision Computing, Special Issue on Gen-
erative Models Based Vision 21, 87–97 (2003)

15. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In Proc. Int. Conf. on Machine Learning (2001)

16. LeCun, Y., Huang, F.J.: Loss functions for discriminative training of energy-based models.
AI-Stats (2005)

17. Lee, C., Wang, S., Jiao, F., Schuurmans, D., Greiner, R.: Learning to model spatial depen-
dency: semi-supervised discriminative random fields. Neural Information Processing Systems
Conference (NIPS) (2006)

18. McCullagh, P., Nelder, J.A.: Generalised Linear Models. Chapman and Hall, London (1987)
19. Qi, Y., Szummer, M., Minka, T.P.: Diagram structure recognition by Bayesian Conditional

Random Fields. In Proc. International Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (2005)

20. Quattoni, A., Collins, M., Darrell, T.: Conditional Random Fields for object recognition. Neu-
ral Information Processing Systems (NIPS) (2004)

21. Torralba, A., Murphy, K.P., Freeman, W.T.: Contextual models for object detection using
Boosted Random Fields. Adv. in Neural Information Processing Systems (NIPS) (2005)


