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Abstract

This paper focuses on the problem of learning binary codes for efficient retrieval
of high-dimensional non-negative data that arises in vision and text applications
where counts or frequencies are used as features. The similarity of such feature
vectors is commonly measured using the cosine of the angle between them. In
this work, we introduce a novel angular quantization-based binary coding (AQBC)
technique for such data and analyze its properties. In its most basic form, AQBC
works by mapping each non-negative feature vector onto the vertex of the bina-
ry hypercube with which it has the smallest angle. Even though the number of
vertices (quantization landmarks) in this scheme grows exponentially with da-
ta dimensionality d, we propose a method for mapping feature vectors to their
smallest-angle binary vertices that scales as O(d log d). Further, we propose a
method for learning a linear transformation of the data to minimize the quanti-
zation error, and show that it results in improved binary codes. Experiments on
image and text datasets show that the proposed AQBC method outperforms the
state of the art.

1 Introduction

Retrieving relevant content from massive databases containing high-dimensional data is becoming
common in many applications involving images, videos, documents, etc. Two main bottlenecks in
building an efficient retrieval system for such data are the need to store the huge database and the
slow speed of retrieval. Mapping the original high-dimensional data to similarity-preserving binary
codes provides an attractive solution to both of these problems [21, 23]. Several powerful techniques
have been proposed recently to learn binary codes for large-scale nearest neighbor search and re-
trieval. These methods can be supervised [2, 11, 16], semi-supervised [10, 24] and unsupervised
[7, 8, 9, 12, 15, 18, 20, 26], and can be applied to any type of vector data.

In this work, we investigate whether it is possible to achieve an improved binary embedding if
the data vectors are known to contain only non-negative elements. In many vision and text-related
applications, it is common to represent data as a Bag of Words (BoW), or a vector of counts or
frequencies, which contains only non-negative entries. Furthermore, cosine of angle between vectors
is typically used as a similarity measure for such data. Unfortunately, not much attention has been
paid in the past to exploiting this special yet widely used data type.

A popular binary coding method for cosine similarity is based on Locality Sensitive Hashing
(LSH) [4], but it does not take advantage of the non-negative nature of histogram data. As we
will show in the experiments, the accuracy of LSH is limited for most real-world data. Min-wise
Hashing is another popular method which is designed for non-negative data [3, 13, 14, 22]. How-
ever, it is appropriate only for Jaccard distance and also it does not result in binary codes. Special
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clustering algorithms have been developed for data sampled on the unit hypersphere, but they also
do not lead to binary codes [1]. To the best of our knowledge, this paper describes the first work that
specifically learns binary codes for non-negative data with cosine similarity.

We propose a novel angular quantization technique to learn binary codes from non-negative data,
where the angle between two vectors is used as a similarity measure. Without loss of generality
such data can be assumed to live in the positive orthant of a unit hypersphere. The proposed tech-
nique works by quantizing each data point to the vertex of the binary hypercube with which it has
the smallest angle. The number of these quantization centers or landmarks is exponential in the
dimensionality of the data, yielding a low-distortion quantization of a point. Note that it would be
computationally infeasible to perform traditional nearest-neighbor quantization as in [1] with such
a large number of centers. Moreover, even at run time, finding the nearest center for a given point
would be prohibitively expensive. Instead, we present a very efficient method to find the nearest
landmark for a point, i.e., the vertex of the binary hypercube with which it has the smallest angle.
Since the basic form of our quantization method does not take data distribution into account, we fur-
ther propose a learning algorithm that linearly transforms the data before quantization to reduce the
angular distortion. We show experimentally that it significantly outperforms other state-of-the-art
binary coding methods on both visual and textual data.

2 Angular Quantization-based Binary Codes

Our goal is to find a quantization scheme that maximally preserves the cosine similarity (angle) be-
tween vectors in the positive orthant of the unit hypersphere. This section introduces the proposed
angular quantization technique that directly yields binary codes of non-negative data. We first pro-
pose a simplified data-independent algorithm which does not involve any learning, and then present
a method to adapt the quantization scheme to the input data to learn robust codes.

2.1 Data-independent Binary Codes

Suppose we are given a database X containing n d-dimensional points such that X = {xi}ni=1,
where xi ∈ Rd. We first address the problem of computing a d-bit binary code of an input vector
xi. A c-bit code for c < d will be described later in Sec. 2.2. For angle-preserving quantization,
we define a set of quantization centers or landmarks by projecting the vertices of the binary hy-
percube {0, 1}d onto the unit hypersphere. This construction results in 2d − 1 landmark points for
d-dimensional data.1 An illustration of the proposed quantization model is given in Fig. 1. Given a
point x on the hypersphere, one first finds its nearest2 landmark vi, and the binary encoding for xi

is simply given by the binary vertex bi corresponding to vi.3

One of the main characteristics of the proposed model is that the number of landmarks grows ex-
ponentially with d, and for many practical applications d can easily be in thousands or even more.
On the one hand, having a huge number of landmarks is preferred as it can provide a fine-grained,
low-distortion quantization of the input data, but on the other hand, it poses the formidable com-
putational challenge of efficiently finding the nearest landmark (and hence the binary encoding) for
an arbitrary input point. Note that performing brute-force nearest-neighbor search might even be
slower than nearest-neighbor retrieval from the original database! To obtain an efficient solution, we
take advantage of the special structure of our set of landmarks, which are given by the projections
of binary vectors onto the unit hypercube. The nearest landmark of a point x, or the binary vertex
having the smallest angle with x, is given by

b̂ = argmax
b

bTx

‖b‖2
s. t. b ∈ {0, 1}d. (1)

This is an integer programming problem but its global maximum can be found very efficiently as we
show in the lemma below. The corresponding algorithm is presented in Algorithm 1.

1Note that the vertex with all 0’s is excluded as its norm is 0, which is not permissible in eq. (1).
2In terms of angle or Euclidean distance, which are equivalent for unit-norm data.
3Since in terms of angle from a point, both bi and vi are equivalent, we will use the term landmark for

either bi or vi depending on the context.
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(a) Quantization model in 3D.
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(b) Cosine of angle between binary vertices.

Figure 1: (a) An illustration of our quantization model in 3D. Here bi is a vertex of the unit cube and vi is its
projection on the unit sphere. Points vi are used as the landmarks for quantization. To find the binary code of
a given data point x, we first find its nearest landmark point vi on the sphere, and the correponding bi gives its
binary code (v4 and b4 in this case). (b) Bound on cosine of angle between a binary vertex b1 with Hamming
weight m, and another vertex b2 at a Hamming distance r from b1. See Lemma 2 for details.

Algorithm 1: Finding the nearest binary landmark for a point on the unit hypersphere.

Input: point x on the unit hypersphere. Output: b̂, binary vector having the smallest angle with x.
1. Sort the entries of x in descending order as x(1), . . . , x(d).
2. for k = 1, . . . , d
3. if x(k) = 0 break.
4. Form binary vector bk whose elements are 1 for the k largest positions in x, 0 otherwise.
5. Compute ψ(x, k) = (xT bk)/‖bk‖2 =

(∑k
j=1 x(j)

)
/
√
k.

6. end for
7. Return bk corresponding to m = argmaxk ψ(x, k).

Lemma 1 The globally optimal solution of the integer programming problem in eq. (1) can be
computed inO(d log d) time. Further, for a sparse vector with s non-zero entries, it can be computed
in O(s log s) time.

Proof: Since b is a d-dimensional binary vector, its norm ‖b‖2 can have at most d different values,
i.e., ‖b‖2 ∈ {

√
1, . . . ,

√
d}. We can separately consider the optimal solution of eq. (1) for each

value of the norm. Given ‖b‖2 =
√
k (i.e., b has k ones), eq. (1) is maximized by setting to one

the entries of b corresponding to the largest k entries of x. Since ‖b‖2 can take on d distinct values,
we need to evaluate eq. (1) at most d times, and find the k and the corresponding b̂ for which the
objective function is maximized (see Algorithm 1 for a detailed description of the algorithm). To
find the largest k entries of x for k = 1, . . . , d, we need to sort all the entries of x, which takes
O(d log d) time, and checking the solutions for all k is linear in d. Further, if the vector x is sparse
with only s non-zero elements, it is obvious that the maximum of eq. (1) is achieved when k varies
from 1 to s. Hence, one needs to sort only the non-zero entries of x, which takes O(s log s) time
and checking all possible solutions is linear in s. �

Now we study the properties of the proposed quantization model. The following lemma helps to
characterize the angular resolution of the quantization landmarks.

Lemma 2 Suppose b is an arbitrary binary vector with Hamming weight ‖b‖1 = m, where ‖ · ‖1
is the L1 norm. Then for all binary vectors b′ that lie at a Hamming radius r from b, the cosine of

the angle between b and b′ is bounded by
[√

m−r
m ,

√
m

m+r

]
.

Proof: Since ‖b‖1 = m, there are exactly m ones in b and the rest are zeros, and b′ has exactly
r bits different from b. To find the lower bound on the cosine of the angle between b and b′, we
want to find a b′ such that bT b′√

‖b‖1
√
‖b′‖1

is maximized. It is easy to see that this will happen when

b′ has exactly m − r ones in common positions with b and the remaining entries are zero, i.e.,

‖b′‖1 = m − r and bT b′ = m − r. This gives the lower bound of
√

m−r
m . Similarly, the upper
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bound can be obtained when b′ has all ones at the same locations as b, and additional r ones, i.e.,
‖b′‖1 = m+ r and bT b′ = m. This yields the upper bound of

√
m

m+r . �

We can understand this result as follows. The Hamming weightm of each binary vertex corresponds
to its position in space. When m is low, the point is closer to the boundary of the positive orthant
and when m is high, it is closer to the center. The above lemma implies that for landmark points on
the boundary, the Voronoi cells are relatively coarse, and cells become progressively denser as one
moves towards the center. Thus the proposed set of landmarks non-uniformly tessellates the surface
of the positive orthant of the hypersphere. We show the lower and upper bounds on angle for various
m and r in Fig. 1 (b). It is clear that for relatively large m, the angle between different landmarks
is very small, thus providing dense quantization even for large r. To get good performance, the
distribution of the data should be such that a majority of the points fall closer to landmarks with
higher m.

The Algorithm 1 constitutes the core of our proposed angular quantization method, but it has several
limitations: (i) it is data-independent, and thus cannot adapt to the data distribution to control the
quantization error; (ii) it cannot control m which, based on our analysis, is critical for low quanti-
zation error; (iii) it can only produce a d-bit code for d-dimensional data, and thus cannot generate
shorter codes. In the following section, we present a learning algorithm to address the above issues.

2.2 Learning Data-dependent Binary Codes

We start by addressing the first issue of how to adapt the method to the given data to minimize
the quantization error. Similarly to the Iterative Quantization (ITQ) method of Gong and Lazebnik
[7], we would like to align the data to a pre-defined set of quantization landmarks using a rotation,
because rotating the data does not change the angles – and, therefore, the similarities – between
the data points. Later in this section, we will present an objective function and an optimization
algorithm to accomplish this goal, but first, by way of motivation, we would like to illustrate how
applying even a random rotation to a typical frequency/count vector can affect the Hamming weight
m of its angular binary code.

Zipf’s law or power law is commonly used for modeling frequency/count data in many real-world
applications [17, 28]. Suppose, for a data vector x, the sorted entries x(1), . . . , x(d) follow Zipf’s
law, i.e., x(k) ∝ 1/ks, where k is the index of the entries sorted in descending order, and s is the
power parameter that controls how quickly the entries decay. The effectivem for x depends directly
on the power s: the larger s is, the faster the entries of x decay, and the smaller m becomes. More
germanely, for a fixed s, applying a random rotation R to x makes the distribution of the entries
of the resulting vector RTx more uniform and raises the effective m. In Fig. 2 (a), we plot the
sorted entries of x generated from Zipf’s law with s = 0.8. Based on Algorithm 1, we compute
the scaled cumulative sums ψ(x, k) =

∑k
j=1

x(j)√
k

, which are shown in Fig. 2 (b). Here the optimal
m = argmaxk ψ(x, k) is relatively low (m = 2). In Fig. 2 (c), we randomly rotate the data and
show the sorted values of RTx, which become more uniform. Finally, in Fig. 2 (d), we show
ψ(RTx, k). The Hamming weight m after this random rotation becomes much higher (m = 25).
This effect is typical: the average of m over 1000 random rotations for this example is 27.36. Thus,
even randomly rotating the data tends to lead to finer Voronoi cells and reduced quantization error.
Next, it is natural to ask whether we can optimize the rotation of the data to increase the cosine
similarities between data points and their corresponding binary landmarks.

We seek a d × d orthogonal transformation R such that the sum of cosine similarities of each
transformed data point RTxi and its corresponding binary landmark bi is maximized.4 Let B ∈
{0, 1}d×n denote a matrix whose columns are given by the bi. Then the objective function for our
optimization problem is given by

Q(B,R) = argmax
B,R

n∑
i=1

bTi
‖bi‖2

RTxi s. t. bi ∈ {0, 1}d, RTR = Id, (2)

where Id denotes the d× d identity matrix.
4Note that after rotation, RTxi may contain negative values but this does not affect the quantization since

the binarization technique described in Algorithm 1 effectively suppresses the negative values to 0.
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Figure 2: Effect of rotation on Hamming weight m of the landmark corresponding to a particular vector. (a)
Sorted vector elements x(k) following Zipf’s law with s = 0.8; (b) Scaled cumulative sum ψ(x, k); (c) Sorted
vector elements after random rotation; (d) Scaled cumulative sum ψ(RTx, k) for the rotated data. See text for
discussion.

The above objective function still yields a d-bit binary code for d-dimensional data, while in many
real-world applications, a low-dimensional binary code may be preferable. To generate a c-bit code
where c < d, we can learn a d× c projection matrix R with orthogonal columns by optimizing the
following modified objective function:

Q(B,R) = argmax
B,R

n∑
i=1

bTi
‖bi‖2

RTxi

‖RTxi‖2
s. t. bi ∈ {0, 1}c, RTR = Ic. (3)

Note that to minimize the angle after a low-dimensional projection (as opposed to a rotation), the
denominator of the objective function contains ‖RTxi‖2 since after projection ‖RTxi‖2 6= 1.
However, adding this new term to the denominator makes the optimization problem hard to solve.
We propose to relax it by optimizing the linear correlation instead of the angle:

Q(B,R) = argmax
B,R

n∑
i=1

bTi
‖bi‖2

RTxi s. t. bi ∈ {0, 1}c, RTR = Ic. (4)

This is similar to eq. (2) but the geometric interpretation is slightly different: we are now looking
for a projection matrix R to map the d-dimensional data to a lower-dimensional space such that
after the mapping, the data has high linear correlation with a set of landmark points lying on the
lower-dimensional hypersphere. Section 3 will demonstrate that this relaxation works quite well in
practice.

2.3 Optimization

The objective function in (4) can be written more compactly in a matrix form:

Q(B̃,R) = argmax
B̃,R

Tr(B̃
T
RTX) s. t. RTR = Ic, (5)

where Tr(·) is the trace operator, B̃ is the c× n matrix with columns given by bi/‖bi‖2, and X is
the d × n matrix with columns given by xi. This objective is nonconvex in B̃ and X jointly. To
obtain a local maximum, we use a simple alternating optimization procedure as follows.

(1) Fix R, update B̃. For a fixed R, eq. (5) becomes separable in xi, and we can solve for each bi
separately. Here, the individual sub-problem for each xi can be written as

b̂i = argmax
bi

bTi
‖bi‖2

(RTxi). (6)

Thus, given a point yi = RTxi in c-dimensional space, we want to find the vertex bi on the c-
dimensional hypercube having the smallest angle with yi. To do this, we use Algorithm 1 to find bi
for each yi, and then normalize each bi back to the unit hypersphere: b̃i = bi/‖bi‖2. This yields
each column of B̃. Note that the B̃ found in this way is the global optimum for this subproblem.

(2) Fix B̃, update R. When B̃ is fixed, we want to find

R̂ = argmax
R

Tr(B̃
T
RTX) = argmax

R
Tr(RTXB̃

T
) s. t. RTR = Ic. (7)
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This is a well-known problem and its global optimum can be obtained by polar decomposition [5].

Namely, we take the SVD of the d × c matrix XB̃
T

as XB̃
T

= USV T , let U c be the first c
singular vectors of U , and finally obtain R = U cV

T .

The above formulation involves solving two sub-problems in an alternating fashion. The first sub-
problem is an integer program, and the second one has non-convex orthogonal constraints. However,
in each iteration the global optimum can be obtained for each sub-problem as discussed above. So,
each step of the alternating method is guaranteed to increase the objective function. Since the objec-
tive function is bounded from above, it is guaranteed to converge. In practice, one needs only a few
iterations (less than five) for the method to converge. The optimization procedure is initialized by
first generating a random binary matrix by making each element 0 or 1 with probability 1

2 , and then
normalizing each column to unit norm. Note that the optimization is also computationally efficient.
The first subproblem takes O(nc log c) time while the second one takes O(dc2). This is linear in
data dimension d, which enables us to handle very high-dimensional feature vectors.

2.4 Computation of Cosine Similarity between Binary Codes

Most existing similarity-preserving binary coding methods measure the similarity between pairs of
binary vectors using the Hamming distance, which is extremely efficient to compute by bitwise
XOR followed by bit count (popcount). By contrast, the appropriate similarity measure for our
approach is the cosine of the angle θ between two binary vectors b and b′: cos(θ) = bT b′

‖b‖2‖b′‖2 . In

this formulation, bT b′ can be obtained by bitwise AND followed by popcount, and ‖b‖2 and ‖b′‖2
can be obtained by popcount and lookup table to find the square root. Of course, if b is the query
vector that needs to be compared to every database vector b′, then one can ignore ‖b‖2. Therefore,
even though the cosine similarity is marginally slower than Hamming distance, it is still very fast
compared to computing similarity of the original data vectors.

3 Experiments
To test the effectiveness of the proposed Angular Quantization-based Binary Codes (AQBC) method,
we have conducted experiments on two image datasets and one text dataset. The first image dataset
is SUN, which contains 142,169 natural scene images [27]. Each image is represented by a 1000-
dimensional bag of visual words (BoW) feature vector computed on top of dense SIFT descriptors.
The BoW vectors are power-normalized by taking the square root of each entry, which has been
shown to improve performance for recognition tasks [19]. The second dataset contains 122,530
images from ImageNet [6], each represented by a 5000-dimensional vector of locality-constrained
linear coding (LLC) features [25], which are improved versions of BoW features. Dense SIFT is
also used as the local descriptor in this case. The third dataset is 20 Newsgroups,5 which contains
18,846 text documents and 26,214 words. Tf-idf weighting is used for each text document BoW
vector. The feature vectors for all three datasets are sparse, non-negative, and normalized to unit L2

norm. Due to this, Euclidean distance directly corresponds to the cosine similarity as dist2 = 2 −
2 sim. Therefore, in the following, we will talk about similarity and distance interchangeably.

To perform evaluation on each dataset, we randomly sample and fix 2000 points as queries, and use
the remaining points as the “database” against which the similarity searches are run. For each query,
we define the ground truth neighbors as all the points within the radius determined by the average dis-
tance to the 50th nearest neighbor in the dataset, and plot precision-recall curves of database points
ordered by decreasing similarity of their binary codes with the query. This methodology is similar
to that of other recent works [7, 20, 26]. Since our AQBC method is unsupervised, we compare with
several state-of-the-art unsupervised binary coding methods: Locality Sensitive Hashing (LSH) [4],
Spectral Hashing [26], Iterative Quantization (ITQ) [7], Shift-invariant Kernel LSH (SKLSH) [20],
and Spherical Hashing (SPH) [9]. Although these methods are designed to work with the Euclidean
distance, they can be directly applied here since all the vectors have unit norm. We use the authors’
publicly available implementations and suggested parameters for all the experiments.

Results on SUN and ImageNet. The precision-recall curves for the SUN dataset are shown in
Fig. 3. For all the code lengths (from 64 to 1000 bits), our method (AQBC) performs better than other
state-of-the-art methods. For a relatively large number of bits, SKLSH works much better than other

5http://people.csail.mit.edu/jrennie/20Newsgroups
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Figure 3: Precision-recall curves for different methods on the SUN dataset.
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Figure 4: Precision-recall curves for different methods on the ImageNet120K dataset.

methods, while still being worse than ours. It is interesting to verify how much we gain by using the
learned data-dependent quantization instead of the data-independent naive version (Sec. 2.1). Since
the naive version can only learn a d-bit code (1000 bits in this case), its performance (AQBC naive)
is shown only in Fig. 3 (c). The performance is much worse than that of the learned codes, which
clearly shows that adapting quantization to the data distribution is important in practice. Fig. 4 shows
results on ImageNet. On this dataset, the strongest competing method is ITQ. For a relatively low
number of bits (e.g., 64), AQBC and ITQ are comparable, but AQBC has a more clear advantage
as the number of bits increases. This is because for fewer bits, the Hamming weight (m) of the
binary codes tends to be small resulting in larger distortion error as discussed in Sec. 2.1. We also
found the SPH [9] method works well for relatively dense data, while it does not work very well for
high-dimensional sparse data.

Results on 20 Newsgroups. The results on the text features (Fig. 5) are consistent with those on the
image features. Because the text features are the sparsest and have the highest dimensionality, we
would like to verify whether learning the projection R helps in choosing landmarks with largerm as
conjectured in Sec. 2.2. The average empirical distribution over sorted vector elements for this data
is shown in Fig. 6 (a) and the scaled cumulative sum in Fig. 6 (b). It is clear that vector elements
have a rapidly decaying distribution, and the quantization leads to codes with lowm implying higher
quantization error. Fig. 6 (c) shows the distribution of entries of vector RTx, which decays more
slowly than the original distribution in Fig. 6 (a). Fig. 6 (d) shows the scaled cumulative sum for the
projected vectors, indicating a much higher m.

Timing. Table 1 compares the binary code generation time and retrieval speed for different methods.
All results are obtained on a workstation with 64GB RAM and 4-core 3.4GHz CPU. Our method
involves linear projection and quantization using Algorithm 1, while ITQ and LSH only involve
linear projections and thresholding. SPH involves Euclidean distance computation and thresholding.
SH and SKLSH involve linear projection, nonlinear mapping, and thresholding. The results show
that the quantization step (Algorithm 1) of our method is fast, adding very little to the coding time.
The coding speed of our method is comparable to that of LSH, ITQ, SPH, and SKLSH. As shown
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Figure 5: Precision-recall curves for different methods on the 20 Newsgroups dataset.
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Figure 6: Effect of projection on Hamming weightm for 20 Newsgroups data. (a) Distribution of sorted vector
entries, (b) scaled cumulative function, (c) distribution over vector elements after learned projection, (d) scaled
cumulative function for the projected data. For (a, b) we show only top 1000 entries for better visualization.
For (c, d), we project the data to 1000 dimensions.

(a) Code generation time (b) Retrieval time
code size SH LSH ITQ SKLSH SPH AQBC Hamming Cosine
64 bits 2.20 0.14 0.14 0.33 0.21 0.14 + 0.09 = 0.23 2.4 3.4
512 bits 40.38 3.66 3.66 5.81 3.94 3.66 + 0.55 = 4.21 15.8 20.4

Table 1: Timing results. (a) Average binary code generation time per query (milliseconds) on 5000-
dimensional LLC features. For the proposed AQBC method, the first number is projection time and the second
is quantization time. (b) Average time per query, i.e., exhaustive similarity computation against the 120K
ImageNet images. Computation of Euclidean distance on this dataset takes 11580 ms.

in Table 1(b), computation of cosine similarity is slightly slower than that of Hamming distance, but
both are orders of magnitude faster than Euclidean distance.

4 Discussions
In this work, we have introduced a novel method for generating binary codes for non-negative fre-
quency/count data. Retrieval results on high-dimensional image and text datasets have demonstrated
that the proposed codes accurately approximate neighbors in the original feature space according to
cosine similarity. Note, however, that our experiments have not focused on evaluating the semantic
accuracy of the retrieved neighbors (i.e., whether these neighbors tend to belong to the same
high-level category as the query). To improve the semantic precision of retrieval, our earlier ITQ
method [7] could take advantage of a supervised linear projection learned from labeled data with
the help of canonical correlation analysis. For the current AQBC method, it is still not clear how to
incorporate supervised label information into learning of the linear projection. We have performed
some preliminary evaluations of semantic precision using unsupervised AQBC, and we have found
it to work very well for retrieving semantic neighbors for extremely high-dimensional sparse data
(like the 20 Newsgroups dataset), while ITQ currently works better for lower-dimensional, denser
data. In the future, we plan to investigate how to improve the semantic precision of AQBC using
either unsupervised or supervised learning. Additional resources and code will be made available
on http://www.unc.edu/∼yunchao/aqbc.htm
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